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ABSTRACT

This document compiles a comprehensive list of publications supported by,

or related to, National Aeronautics and Space Administration Grant NSG-3048,

entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the

original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce

Lehtinen was the final Technical Officer. At the University of Notre Dame,

Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors,

with Dr. Sain becoming the final Project Director.

Publications cover work over a ten-year period. The Final Report is

divided into two parts. Volume i, "Modelling and Control Design with Jet

Engine Data", follows in this report. Volume 2, "Modelling and Control Design

with Tensors", has been bound separately.
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COMPI(NSATIOI; OF }[ULYIVARIABLE CONTIIOL SYSTEMS

Abstract

by

V. Seshadrl

This study addresses two possible approaches to the problem of linear

multlvariable control system design. The first approach belongs to the class

of exact model matching designs; the second approach makes use of the charac-

teristic methodologies of >IacFarlane.

In the exact model matching case, we consider the problem of finding

stable solutions G(s) to the transfer function matrix equation

Gl(V) G(v) = G2(v)

where all matrices have their elements in the quotient field R(v) formed from

the ring R[v] of polynomials in the indeterminate v with coefficients in the

real number field R. Our viewpoint on this equation is the free R[v]-module

structure presented by Sain in 1975. Previous work has made clear how to

answer questions such as whether G(v) can be proper and minimal. Herein we

present some tools and partial results oriented to the question of whether

G(v) can be stable.

In the MacFarlane methodologies case, we have considered the problem of

compensating a two-input, two-output, five-state jet engine model in the class

described by Michael and Farrar. Inputs chosen were main burner fuel flow and

Jet exhaust area; outputs were thrust and high turbine inlet temperature.

Software was developed for constructing characteristic iocl and a number of

related parameters, and an effort was made to use the ideas of noninteraction,

_tegrity, and accuracy to achieve an introductory Jet engine control design.

The results are positive in nature, although we feel that more attention is

l_eeded in this theory toward the actual design of reasonable compensators.
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POLYNOMIAL TEC}_IQUES APPLIED

EDMUL'IXVARIABLE CONTROL

Abstract

By

Raghvendra R_ GeJJi

One way to approach the design of linear multlvarlable control

systems is by meana of exact model matching, where desired closed loop

performance is expressed in terms of a specified transfer function

matrix. One que_tlon which is often raised about such an approach

involves the practicality of specification of such a desired, closed

loop performance matrix.. Another, related, question concerns the

possibility of determining the existence of compensators to achieve

such a performance, as well as giving a flnlte enumeration of them and

selecting those which are, for example, minimal or stable.

This study addresses itself to these points, in reverse order.

Research by Saln in 1975 has established that determination of the

existence of compensators and a finite enumeration of them is possible

within the context of free modules over polYnomial rings. Algorithms

to accomplish this in theory are also available. The first purpose of

this work was to construct straightforward computer software to check

the workability of these theoretical algorithms. This has been accom-

plished in both FORTRAN and PLI, with listings for the former included

herein. It was found that these programs were successful on the sort

of small problems which often appear in the literature. The second

purpose of the work was to evaluate these first-generatlon software

efforts on a realistic practical problem, This has been accomplished

In the context of multlvarlable control of models derived from the FI00

turbofan engine by Michael and Farter. It was established that speci-

.£1catlon of dcslred closed loop performance matrices is a reasonable

idea for thls appllcatlon, and in fact that in at least one caso it has



already been done. This meansthat exact model matching is not a

vacuous idea, at least for Jet engines. Efforts were then expended to

determine if the first-generation software would compute compensators

--which had been proven to exist. The results here were promising

but inconclusive. Though the software would yield answers of the

degree expected (a definitely nontrivial achievement), elgenvalue tests

and other checks initiated to verify accuracy were decidedly disappoint-

ing.

Twoconclusions are possible: (i) that someoversight remains

undetected in the software or (2) that straight forward computer soft-

ware is unequal to this application. The second of these possibilities

appears to be the more probable at this time, though the first cannot

be eliminated with certainty. Studies are under way to develop more

Sophisticated software.

In any event, the results in terms of problem formulation are

promising enough, and the computer results close enough, to suggest

that further work on this problem would be worthwhile.

6
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ABSTRACT

This paper is a report on research being carried

on at the University of Notre Dame Department of Elec-

trical Engineering on alternatives to current Jet

Engine Control System design methods which rely heavi-

ly on linear quadratic and Riccati equation techniques.

The main alternatives are classified into two broad

categories

i) Nonlinear Global Mathematical Programming

Methods

2) Linear Local Hultivarlable Frequency Domain

Methods

Specific studies within these categories which are

described briefly in the paper include model reduction,

the Eigenvalue Locus Method, the Inverse Nyquist

Method, Polynomial Design, Dynamic Progra_ming and

Conjugate Gradient approaches. The studies are being
carried out with the o_jectlve of arriving at a de-

mlgn to be tested on the DYNGEN Jet engine simulator.

NOMENCLATURE

A 7 - nozzle area

CC - compressor specific heat

CF - fan specific heat

_C_T - low turbine specific heat

._T - high turbine specific heat
h - enthalpy
F - thrust

I C - compressor moment of inertia
I fan moment of inertia

jF mechanical equivalent of heat

N c - compressor rotor speed

N F - fan rotor speed

P4 - main burner pressure

P7 - afterburner pressure

P_o - high turbine pressure
R" - gas constant

T 6 - high turbine inlet temperature

T? - afterburner temperature

T21 - fan output temperature

TSO - low turbine i_put temperature

T55 - low turbine output temperature

u i - control variable

VCO H - combustor volume
V._ - low turbine volume

Wk_ - compressor flow

W_ - main burner fuel flow

WG55 - low turbine flow

X l - atate variable
a duct bleed ratio

B - high turbine bleed ratio

y - ratio of specific heats

n - main burner efficiency

D - main burner density

_B compressor bleed ratio

INTRODUCTION

A large share of the current work (!), (_), (!)

on Jet engine control system design involves linear

quadratic and Riccati equation methods at specified

operating points, with global nonlinear controllers

being produced by scheduling and gain interpolation

between operating points. In.is work we briefly ex-

amine several alternatives to this approach. It is

anticipated that designs obtained by combining one or

more of these alternatives will be tested on a simu-

lated turbofan engine resembling the Pratt and Whitney

F-100 model, using DYNGEN (!), (_), a computer progra=

developed at NASA Lewis Research Center for simulating

a variety of engine configurations.

The alternatives which are considered can be cate-

gorized broadly into Nonlinear Global Hathematlcal Pro-

gra_m_ing methods and Linear Local Multlvariable methods.

In each case It is desirable to have a relatively low

order analytical model of the engine in order to carry

out the associated design procedure. As an initial

attempt to realize such a model, the configuration of

Figure 1 was chosen with no duct or afterburning,

and 23 differential equations were specified; 3 for

each volume unit, and 1 for each rotor. The method

employed corresponds closely to that described In (6_),

(D, (_).

Ftg. 1. Assumed Engine Configuration

133

9



It lq woil known that the essential dynamics of a

turbofan CnKine can be ruralised by eliminating certain

dil fcrcntia! equations which correspond to high fre-

q,wncy respon*;e characteristics. We dv this by re-

placing the dynamical condition by its associated

cqul|Ibrium cnndltion. As an illustratlon, _.'echoose

[an turbine Inlet temperature x. " T._, ma|n burner
L )t,

pressure x 2 - P&, fan speed x_ - Nr, F_igh compressor

speed x. t-N_, and afterburne_ pressure x_ _ PY' as
the essentia_ sta_e variables. As contro_ inputs we

choose Jet exhaust area u. - A_ and _ain burner fuel
/ ,,flow u. - WFB. The outputs are taken as thrust y.

" i
F and 5igh turbine inlet temperature Y2 " T4' These

choices correspond to those used in (1I, and provide

an opportunity for relating a fifth order nonlinear

model to well known linear models, The usual approach

to obtain linear models is to employ an identification

scheme (I__), (9), (i0), based on system measurements,

The analytical nonlinear model provides an alternative

through partial differentiation and is expected tO

yield additional insight into the system structure.

Using the methods of (6), (_7), (_8), and takin_

into account the flow relations of Fig. i, the follow-

ing equations are abtalned.

dT50 . RTbo (YT55-Tb0)[(I-a¢)WAC+WFB-W¢55 ]

dt VLTPs0

(i)

dP 4 Ry h B

d--t'-" _COM[(T3-T4 )(I-_)WAC+n _B wFB] (2)

dNF ./3012 J

d"_- I_N-_F[CF(T2-T21) (ATWT-WFB) (3)

+ CLT(Tbo(WFB+(I-n_)WAC)-WG55 T55)]

_c .130_ J

d--E--(_N_C [Cc (TzI'T3)wAc (4)

+ CHT((T4-Tbo)(WFB+(I+B_-_)WAC))]

dP 7 RyT 7
--- ----_'[WG55-WFB-(I-a_)WAC]

dt VAF

(5)

where TS^ , P4' NF' N., P_ are states; A_ and k_B are
inputs; _.., T.o, WA_, W_55, n, T2., WG_ - A.W., and

T 7 are nogYine_ functions of the fnputs and's{ate
variables determined by component characteristics; and

finally the outputs F and T 4 are also nonlinear

functions.
In the next four sectlone, we discuss methodol-

ogies relevant to the analysis and design of linear-

Ized models of equations such as these.

LINEAR MULTIVARIABLE SYSTEMS

In this section we wish to provide some general

background relevant to the problem of controlling

linear multlvarlable systems. Keeping in llne with

the theme of "alternative methods", we shall bypass

the common topics of state feedback approaches, in-

cluding the ubiquitous Riccati equation. Instead we

shall focus upon input/output descriptions. Of

particular interest at this point are what wameanby
a linear multtvariable system and what issues arise

when we close loops around such IystemI,

Denote by R the field o[ re,_l numbers, and by

R[s] the commutative rin_ of polynomials In s with co-

efficients in R. Because R[s] is an lnte_lral domain,

there is a field of quotients (l._.[i) associated with it.

_'note thi_ field by R(s), and note that this is the
usual "field of rational luncttons in s". For our

purposc_ hereby, a linear multtvarlable system is Just
an rx_ matrix G(s) each of whose elements is in R(s).

In accordance with the customary conventions, we refer

to an element In R(s) as a "transfer function" and to

G(s) as a "transfer function _atrlx".

Turning now tO thd closed loop topology, we con-

sider an interconnection of linear multivarlable sys-

tems as sho_ in Fig. 2. Here we regard the linear

L old

Fig. 2 Feedback Interconnectlon

multivariable systems F(s), K(s) and L(s) as compensa-

tors, whereas C(s) is assumed to be the object of con-

trol. Working on the premise that o(s) is to be com-

pared with i(s), the system F(s) is taken as square.

The composite system in the forward path is denoted by

q(s) - L(s) C(s) K(s). (6

Insofar as Figure 2 is concerned, one of the most cen---

tral questions of interest centers upon the relation

between the "poles" of the closed loop conflguratlon

and how they relate to those of the open loop configu-

ration. +_

A number of issues pertain to this relationship.

Given Q(s) alone, it is clear that we cannot determine

the nature of any modes which cancelled when £t was

constructed; accordingly, we concentrate upon the kno_

ledge available from Q(s) itself. By the characteris--

tie polynomial T_(s) of Q(s) we shall mean the least

common multiple _f all the "denominators" of all the

minors of the matrix Q(s). A corresponding meanlng i_

attached to T=(S). Then the open loop characteristic

polynomial To_(S) is defined by

ToL(s) = TQ(S) TF(S). (

In many situations it happens that the feedback com-

pensator system F(s) can be represented by the identi,-

matrix; then (7) simplifies tO

ToL(s) - Tq(s ) . (8)

Because of space limitations, we shall use (8) in our

further discussions. Next we recall the closed loop

system H(s) given by

x(s) - (I + q(a))-I q(a) ('"

and denote its characteristic polynomial by Tx(S).
Within the context o ¢ our present assumptions, it is

realistic to understand T.(I) as the closed loop

characterlsti_ poly_omlsl"TcL(s).
Now the poles of the open loop system may be

taken as the zeros of TOL(e). and the "poles" of the
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closed loop system may be taken as the zeros of TC.(S).
Central, then, to the treatment of this section an_

of the two sections which follow is the identity

Tcu(S)- II + q(s)lZOL(S), (10)

where the vertical bars stand as usual for a calcula-

tlon of the determinant. This relation is by now

quite well known (12). (13), (14), (15). A con-
sequence of (I0) is that a Nyqulst plot of

IX + Q(s) l (n)

suffices, as in the classlcal case, to inform the de-

signer about closed loop stability. There are various

ways to attack the construction of a Nyquist plot for

(Ii), and we shall briefly examine two of these in the

next two sections, in the context of the following Jet

engine example.

Let G(s) be a 2x2 transfer function matrix de-

scribing linearlzed F-100 turbofan jet engine dynamics

at a power lever angle of 47 degrees. The inputs are

main burner fuel flow and Jet exhaust area; the out-

puts are thrust and high turbine inlet temperature;

and the states, five in number, are high compressor

speed, fan speed, fan turbine inlet temperature, main

burner pressure, and afterburner pressure. We have

selected this model to correspond to a linearizatlon

of (I), (2), (3), (4), (5). The data for our

model has been taken from a report by Michael and

Farrar (_). The power lever angle chosen is about mid-

way between the engine idle condition and maximum non-

_fterburnlng power. GCs) is found to be

(.018ag+.145s4-92.Ogs 3 (.546a5+71.9a4+2247s 3 l

_396.9s2+29801s+95491)" _1943s2_16855s_12495) 1
(12)

_'086sg+31"63;4+3321"gs3 (-'013sg-'437s4+68"2s3 l

+25500s2+760i8s+78277) +1703.3s2+1742.9s-3532.2_

sg+140.Ts4+5337.6s3+38691a2÷l19690a+133389

THE £ZGENVALUE APPROACH

We have mentioned in the preceding section that

interest in closed loop stability can center upon the

determinant (Ii). Bern we want to illustrate one

approach to the construction of a Nyqulst plot of (II).

This approach is due to MacFarlane (15), and all the

curves presented are taken fro= a thesis by Seshadr£

(_).
The basic idea is this: for each particular

value of s on a Nyqulat contour, the determinant (11)
is the product of its eigenvalues in the manner

k

]1 + Q(s)] - , .i(l+ Q(s)), (13)
i-I

where ei(A ) denotes the ith aigenvalue of the matrix
A. Moreover, from the evident relation

eICl+ q(a)) - I + eicq(,)). (14)

we find that

k

It + q(.)l " • (l÷ eiCQCs))). (lS)
£-I

Recalling that the argument of a product of complex
numbers is the sum of the arguments of Its factors.

and noting that each of the factors in (15) resembles

the function which is plotted in Nyqulst studies of

single-lnput, single-output systems, one is motivated

to make k individual Nyquist plots, In a manner suggest-

ed by the right member of (15), in place of the one,

more complicated, Nyqulst plot of its left member.

This is the idea suggested by MacFarlane.

From a computational point of view, the idea is

attractive, requiring only eigenvalue routines---whlch

are available ---which accept arbitrary square complex

matrices. We can illustrate this construction on the

Jet engine problem given numerically in (12). One

allows s to follow a clockwise Nyquist contour, and

computes the eigenvalues of (12) for each value of s.

The locus of one elgenvalue of G(J_) is shown in Fig.

3 for positive values of w. To the analyst experienced

.J.

-.8

=I.

] ".

m • • •

-.0 -.6 -._ . ._

• • | |

.z ._ .6 .a

Fig. 3 First Eigenvalue Locus of (12)

in Nyqulst plots of slngle-input, single-output syste=s,

there is one very notlceable feature of the locus in

Fig. 3; and that is the fact that it does not begin

(w - O) on the real axis. In fact, of course, it is

easy to see that the points of beginning for the locl

are determined by the eigenvalues of the matrix which

95491 -12495 ]

78277 -3532.2j , (16)

133389

is found from (12) upon placing s equal to zero. Simi-

larly, the loci need not end on an axis either, or be

asymptotic to one. This is not as easy to see from

Fig. 3, where the scale tends to prevent us from seeing

, that the locus ends at .0025 + .216J, which is one of

the etgenvalues of

llm c(,)-F.ol8 .5467
a-J- _.086 -.o13j (17)

Generally speaking, the elgenvalues of which we speak

are solutions to the equation

r2(s) X2 + rl(s) I ÷ rO(s) m 0 (18)

for ri(s) ¢ R(s). i - O, I, 2. If (18) is satisfied
for a particular pair (s, k), then clearly it w£1l also

be satisfied for the pair (s*, k*), where we use the

superscript (*) for conjugation. Thus we know that the

locus conjugate to that in Fig. 3 will be the negative-

locus for an elgenvalue plot. Inspection of Fig. 3,

however, shows clearly that the locus and its conjugate

do not combine to form a closed curve for the Nyqulst

test. To see why this Is the case, we examine the

second eigenvalue locus of (12). which is portrayed in
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First EigenvaYue Locus for Strictly

Proper Part of (12)

Fig. 4 Second Eigenvalue Locus of (12)

Fig. 4. Now it can be seen that the conjugate of the

second locus fits together with the first locus to

form a closed curve; and, similarly, the conjugate of

the first locus fits together with the second. From

Fig. 3 and 4, then, we can piece together two closed

Nyquist locl, neither of _hlch encloses the point -i

+ j0. Thus we would consider concluding that the

system (12) is stable under unity negative feedback.

Some quite delicate questions are associated

with this method. Among these is the matter of

whether or not (13) is sensible when both members are

regarded as functions of the complex variable s. This

existence questiDn has been solved (17). More crucial

for Nyqulst considerations is the behavior of the

functions el, e2, ..., eb in the rlght-half plane
Re{s} > O. Barman and K_tzenelson (i_8) have shown

that, ?or stable systems such as the jet engine model

under study here, the exceptional points to be heeded

in Re{s} • 0 are those points for which (18) has zeros

of multip_iclty greater than one. Seshadrl (1._6)has

determined that there are three of these points in our

example, all on the real axis. Generally speaking, it

is the presence of such polncs that causes us to have

to piece together the conjugate of Fig. 4 with Fig. 3

to form a closed locus, instead of being able to fit

the conjugate of Fig. 3 together with Pig. 3 itself.

This feature precludes any easy approach to identify-

in S "individual" closed-path eigenvalue functions, al-

though by addition of branch cuts from the exceptional

.points, together with a corresponding modification Of
the Nyqulst contour, it is possible to achieve this

goal (I_8). The problem, however, is that computation

of exceptional points off the imaginary axis, as well

as the branch cuts, presents an added computational

burden. It seems much easier, instead, to use the

above approach of "piecing together" the various loci.

Further insights can be gained by making similar

plots for the strictly proper part of (12). To do

this, G(s) is written as the sum of (17) plus a re-

mainder matrix, which is the strlctly proper part.

Fig. 5 shows the first eigenvalue locus for this

situation. A notable feature of the plot is its

beginning and ending on the real axis. As a result,

its conjugate can be combined with itself to give a

closed "individual" eigenvalue locus. A similar obser-

vation obviously holds for Fig. 6. It can be shown

that no exceptional points are present for this ex-

ample, which is also stable under unity feedback.

.I

0

..3

..4

I ! t _ I I | "

0 .I .2 .3 .4 .$ .6 .? .$

Fig. 6 Second Eigenvalue Locus for Strictly

Proper Part of (12)

Considerable care is advisable in considering this

tool when F(s) is not proportional by an element of _r

R(s) to the identity matrix. Rosenbrock and Cook have

exhibited (19) counterexamples when F(s) is diagonal

with differing elements. Such a difficulty can be
anticipated from (14).

The eigenvalue approach does, therefore, seem to

add insight to the analysis of Jet engine control mod-

els. Preliminary efforts, however, to compensate the

models with introductory techniques (1--5) have led to

the tentative conclusion (i_6) that the theory Of elgen-

value compensation may be in need of some extension for

the Jet engine control problem. Moreover, the propor-

tionality restrictions on F(s) appear to represent a

notable limitation which suggests care in assessing

the physical nature of the feedback to be employed. In

many digital control situations, the assumptions would

seem to be sound; however, simulation is always s de-

sirable check.

THE DOMINANCE APPROACH

We have conunented earlier that a Nyqutst plot of

(11) is central to the linear, multivartable feedback

control problem. One approach to the treatment of such

a determinant has been described in the preceding sec-

tion. We now turn to another approach, which is due

to Roeenbrock (12).
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Here the Idea is to recognize that the calcula-

tion of (ii) would reduce to k single-input, single-
output problems if Q(s) were diagonal, or equivalently
if the forward path system had negligible interactlon.
Instead, however, of seeking exact nonlnteraction,

Rosenbrock has set up a theory based upon "approximate"
noninteractlon. The keystone in the theory is the
result of Cershgorin, which states that the elgenvalues
of an kxk complex matrix Z lie in the union of the
discs

k

l,-ziil- I Izijl_o.i-x.2 ..... k (19)
J-1
j+i

and also in the union of th_ discs
k !

la
" zli[- j-_z[zji[_ o, i - 1,2.....k. (20)

J+i

Clearly, [Z[ is nonzero if the intersection of the

disc sets (19) and (20) does not include the origin.
The feature of excluding the origin is called
"dominance" by Rosenbrock. In particular, if

k

lzllcs)[- Z lzlj(s)l> _, i-x,z,...,k (2l)
J=l
j+i

for every • on a Nyquist contour having on it no poles

of Z4i(s), i = 1,2 .... ,k, then Z(s) is said to be col-
tnnn aominant; again, if (21) is replaced by

k

[Zli(s) [ - .[llZji(s) l > c. i - 1,2 .....k. (22)
J
j+i

then Z(s) is termed row dominant. Either (21) or (22) Z
is sufficient to ensure that the number of times that

a Nyquist locus of IZ(s) l encircles the origin can be
determined by forming a net sum of the number of times _:

that Nyquist loci of Zii(s), i - 1,2,...,k, encircle
the origin. ;

o.

If we denote by H(s) the matrix

(I + qCa)) -lq(s), (23) :_

then

Ix + Qcs)I- l.-Z(s)l/IQ'ZCs>l, (24> _

provld_d that q(s) has an inverse. _en both Q-l(s)
and H (s) are, for example, row dominant, Nyquist _!=
locue behavior of their determinants in (24) can be ""

computed from the Nyquist locus behavior of the ele-
ments on their diagonal. Moreover, because

H'l(s) - q-l(s) + I. (25)

diagonal elements of H-l(s) are Just corresponding
elements of Q (s) shifted by unity.

From these ideas, Rosenbrock has developed a
number of graphical strategies here for our Jet engine

example. For each 11 ] = 1.2.....k. construct the
Nyquist locus of (q" (s))_; at each s, construct a

circle with center (Q-iCS_li and radius
k

Iq-X(s>)ljl (26>
J-1
j+i

11 neither the point -I + )0 nor the origin lle in the

union of these clrcles, then Q-l(e) and H-l(s) are

column dominant and stability c_n be studied by ex-
aminlng the Nyqulst loci of (Q- (S))ll , i " 1,2, ....k.

Fig. 7 and 8 show such plots for the cases I - 1
and i = 2, respectively, when Q(s) is equal to the
C(s) specified in (12). The small arrow in these

I_EAI. g_qT

Fig. 7 First Gershgorin Band Plot
Corresponding to (12)

¢'. ,_c

Fig. 8 Second Gershgorln Band Plot
Corresponding to (12)

figures indicates the direction of increasing _ as
goes from zero _o infinity. Fig. I is quite eatlsfac-
tory; however. Fig. 8 indicates poor dominance at low

frequencies.
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This lends us, then, to the baste question o[

how to achieve dominance. In a real seuse, this may

be the central issue in the present approach to

analvsls and design. From the Jet engine control

problem viewpoint, it would be very desirable I£ any

compensators K(s) and L(s) chosen to achieve dominance

were constant. Because of the presence of a number of

physical variables upon which a parameterlzatlon might

be based, it might then be possible to choose constant

compensators at a family of operating points and then

to interpolate between them according to the action of

a suitable physical variable. For this presentation,

then, we took an introductory look at constant compen-
sators to achieve dominance.

In view o[ Fig. 8, it seems promising to try a
compensator G (O) for K. Such a choice results in

perfect dominance at zero frequency. As expected, the

new plots, Figs. 9 and I0, reflect this improvement at

low frequencies. Note that, although Fig. 9 indicates

A

z

_a

o

t

T"

_[q_ f_ql

Fig. 9 First Plot for System

Compensated at Zero Frequency

dominance, the dominance situation in Fig. i0 remains

unsatisfactory, with least dominant behavior now oc-

curring at high frequencies in contrast to such be-

"havlor which was seen at low frequencies in Fig. 8.

We have space here for one more illustration.

Using an optimization method termed "pseudo-domlnance"

by Rosenbrock (12), we chose a constant compensator K

designed to improve row dominance near unity angular

frequency. The results are shown in Figs. II and 12.

Though not easily checked visually, the Gershgorln

bands exclude the origin; stability could thus be

established by gain adjustment in the feedback path.

(A_though th_ compensator K was chosen for row doml-
nance for Q- (s), we have plotted bands corresponding

to column dominance. This was necessary because this
K did not achieve row dominance of Q" (s). Fortu-

nately, however, it did help with column dominance.

For consistency, then. we have plotted Fig. _-I0 also

in column band form. All six plots are due to Maloney

(L£))"
Once dominance is achieved, this methodology

leads rather quickly to designs of compensators In.the

individual input or output channels. Principal

o_

• .

/.b,'"i' I ';C :?:.'
. . . , / /" ..._.,'<_-.._'_

If' t t t

i,

R t'. I:IL PRqT

Fig. I0 Second Plot for System

Compensated at Zero Frequency

¢_'

_r

o
o

I. I .t_

Fig. II. First Plot for System

Compensated at Unit Frequency

interest, then. attaches to the achievement of domi-

nance. Though our examples here are definitely intro-

ductory, they do serve to show that typical Jet engine

models do not yield trivial dominance questions. These

observations have been borne out on studies at power

lever angles of 35 and 60 degrees as well, for models

up to five inputs and five outputs (_).
A preliminary conclusion seems to be that dynamic

compensation may be needed to achieve dominance in Jet

engine models. This would of course add to the com-

plexities of building up a global controller from

multiple local linear controllers.
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Fig. 12. Second Plot for System

Compensated •t Unit Frequency

POLYNOMIAL DESIGN

This section concludes our discussion of linear

design alternatives. Unlike the previous two sections,

the discussion here takes place outside the Nyquist

context. Rather, it is based almost entirely on poly-

nomlal algebra.

_-- Problem for=ulatlon is deceptively simple. Given

two matrices GI(S) and G_(s) each of whose elements is
in R(s), we seek to find*and enumerate all matrices

G(s) which satisfy the equation

Gl(s) G(s) - G2(s). (27)

and which also have elements in R(s). Other aspects

about G(s) which are of conslderable interest Include

whether or not it Isproper (which translates into

linear dynamical reallzability), whether or not the

number of dynamical elements required to realize it is

• minimum among proper solutions to (27), and the lo-

cation of its poles. In _he literature, (27) his

come to be known as the "exact model matching problem".

Our purpose here is not to give an historical survey

of the literature, but we can co-_ent in passing on

one of the more recent approaches to solving this prob-

lem' (21). Basically, one expresses

Gi(s) - (bi(s)I)-I Al(s), I - 1.2, (28)

where b.(s)l and Al(s) are polynomial matrices. Then
it can _e shown _hat solution to 427) amounts to a

calculatlon of the kernel of the matrix

[b2(s) ll(S) -hi(s) Al(s)], (2_)

regarded as defining • morphism of free _[sl-modules
(l l). From the basis of this kernel, which amounts to

the desired enumerative description of possible G(s),

It is possible to decermlne minimal proper solutions

and to address pole location, GeJJl (22) has devel-

oped "KERPO" software for finding the KE_Rnel of

POlynomial matrices, both in FORTg,_ and PL1. lie

his further s_udled applicability of the technique to
the Jet engine model (12).

The situation is as shown in Fig. 13. The engine

Fig. 13 Polynomial Design Configuration

model (12) is represented by a minimal realization

(A,BiCiD), as in (_). A desired transfer function

matrix T°(s) is specified such that

o(s) = T'(s) t (s). (30)

It iS desired to enumerate all possible proper compen-

sators M(s) and N(s), the latter operating upon the

states realizing (12), in Fig. 13 such that (30) is

achieved. It can be shown (22) that this problem re-

duces to computing a kernel for the matrix

[M(s) -d(s) z],
whe re

(d(s)I) -1 hi(s) = [qT(s)

(31)

-pT(s) ], (32)

superscript "T" denoting transposltlon_ for

P(a) = (sl - A)-IB, (33)

qCs) = [(T°(s)) -1 - z] CCs). (34)

T°(s) was determined In a manner similar to (!), with

(31) becoming a 2x9 matrix having polynomial entries of

degrees as high as thirteen.

The purpose of this study was to determine whether

straightforward implementation of known algorithms such

as (2--1)would succeed computationally on these typical

Jet engine problems or whether more sophisticated soft-

wares would be required. Results indicate that success

will probably be achievable with software using ra_lonal

arithmetic, while the use of real arithmetic is less

promising.

Of course, the principal difficulty in exact model

matching designs iS generally specification of T'(s).

Of greater interest, then, might be the inversion of

these methods to describe achievable T*(s).

The utility of linear design methods in Jet engine

control appears to lle in piecing linear designs to-

gether to get a global nonlinear design. Of course, a

direct approach to global nonlinear design based on

the equations (1)-(5) is also possible, and we turn now

to some alternatives in this regard.

MATHEMATICAL PROGRAM>lING APPROACH

The linear multivariable approaches of the previ-

ous sections aim at various criteria common to good

regulation about design equilibrium points. They de-

pend on schedul_d nominal inputs for large excursions

which are often part of the engine design itself, A

global nonlinear approach actually takes scheduling and

local control action Into account simultaneously by

specifying the total control, and in this manner,
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overlaps the control and engine design prob|ems.

As a preliminary global study0 the problem is

taken a_ one o{ golo R from idle to a high thrust de-

sign _eq2Ji]ibrl_m point in minimum time, _'hile observ-

Ing 51d¢ con_tr,lints on surge r, nrgln and high turbine

inlet temperature.

The usual approaches of Optimal Control (23), (2__44),

(35) have been considered, but only _'lthin the more

modern, more system,_tic, and more general framework of

/dathcmattcal Program_ing (26), (27), (2._88). If side

constraints are included through penaIty and barrier
methods, the control problem can be viewed as an

unconstrained minimization of an objective function

J (_u) where

Fo 0,]

Lu}s-l 
and

N-1

J(u) - K(x(N)) + [ L(x(t),u(t),t) (36)

if0

with the differential equation approximation

x(t+l) = x(t) + f(x(t),u(t)). (37)

Standard algorithms such as the Fletcher-Reeves

Conjugate Gradient (26), (2--9) and the modified Davidon-

Fletcher-Powell quasi-Newton algorithm with self-

scaling and automatic restart (26), (2__77)can be ap-

plied directly to this problem with J(_) being evalu-

ated by solving (36), (37) for t = 0,1,...,N-I. The

gradient

v J - (38)[Vu(O)J Vu(1)a ... Vu(s_l)J]

is determined by solving the adjoint equations

X(t) - h(t+l)÷X(t+l)Vxf(x(t),u(t)+VxL(x(t),u(t),t )

(39)

x(_) - v K(x(N))
x

for t " N-l, -..,2,1 and observing that

Vu(t)J ffi XCt+l)VufCx(t),u(t))+VuL(N(t).u(t).t) (40)

Each of the algorithms mentioned above requires a llne

search for minimization of

h(a) - J(u...+ag,h'(O) -Vun(U_) (4D

along directions d, (usually not the gradient direc-
tion) determined by the particular algorithm. A cubic

approximation of h(a) depending on h(0), h'(0) and tWO

other values h(a), h(b) as suggested by Lasdon (29)

seems to be an efficient basis for carrying out a

fairly simple line search in one step. Refinements of

this approach are belng sought, as it is essential that

the number of evaluations of J(u) and V J(u) be kept

to a minimum due to the amount _f compu_atlon required.

Let us now consider a simple computational ex-

ample. The two spool turbofan engine of Fig. I can be

specialized to a single spool turbojet engine by zero-

Ing out certain terms. If we also choose burner

density 0 B as a state variable a simple third order
model is
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d°B i

dt VCOM (WAC+WFB-WGd)
(_)

nh B
d_4 . R_ (T3WAC+Td(WFB_WGd) + -- )
dt VCO M

(_2j

d'-_'-"dNC (302_[CcWAC(T21-T3)+CHTWGd(T4-TT)_"-). } (44)

If the variables are normalized about a high

thrust design point and certain simplifications (8),
are assumed for the nonlinear functions involved, a

complete n_.erleal model which has the essential charac-

teristics of the engine studied in (_) is

d; B
dT- 37.78 W_C-38.448 _4+.66849 WFB (45)

with

d_4 -2

d'-t'- " 21.435 WAC T3-53.86 P4

0 B

_4
+ (31.486+.93586 =-- )W'FB

d'qc ($._4z.-- * 1.258 - w_c _)

dt DB N

(66)

(_7)

WAC - 1.3009 N C - .139825 P4

(48)

-2 (49)
T3 " .64212 + .35788 N C .

The single control variable is ICFB and the proble_

is to drive the system from idle (actually windmill

here with WFB = 0)

°S = 1.774 P4 = .5384 NC " .5461 (50)

to design (with WFB - I) and

_B " 1 P4 " I NC = I (51)

in minimum time subject to surge margin and turbine

inlet temperature constraints approximated respectively

(30) by

_4 _ 1.2s _c (s21

_4 ! 1.2s ;s " (s3)

Notice that a good second order approximation to _I

the problem can be obtained by considering only tha i
dynamical equations (45) and (47) and taking P_ as s I

control variable. Once the optimal P4 is obtained,
e-_-_a (46) is used to determine the _ neceIsar_ to 1i

yield P4" This technique was used (30) to obtain # [
Dynamic Programming solution to the p'_oblem with t im_

step size _t - .002 as indicated in Figs. 14 and 15.

Generally there are three regionI of control:



(1) P4 rldeB the Burgs margin constraint bound-

ary (P4 " 1.25 NC).

(2) P4 switches and bides the inlet temperature

constraint boundary (P4 = 1.25 o_)
(3) Pa leaves the inlet temperature _onstralnt

b6undary and adjusts to get all states to

final design equilibrium value of unity.

Lagrsngtsn techniques. Also, it appears Chat the state

constraints can be taken to be of very simple form

(such as xi(t) • O) and this should open the way for
the development-of simple feasible direction =ethods to

handle the hard side constraints.

.i i,.

,.m ., *.-,r ae,.t ,j

dm .8 h,_,. t_,tr.u, *_.,.. .i Ib

'' l"'l I t
Fig. 16 Conjugate Gradient Open Loop Opt1=al

Fig. 14 P4 Switching R_gions For Hini_ Tlmge Time Trajectories

From Idle to Design S_

The objective of this work is to report on various

alternatives to linear quadratic design methods for Jet

,., engine control systems. The principal global consider-

attons are problem formulation, simple analytical models,

the DYNGEN engine simulator, and Hathematical Prograramingt.,

methods. The principal linear mu_ttvartable approaches

,., are the Characteristic Locus Method of HacFarlane, the

Inverse Nyqutst He,hod of Rosenbrock and Polynomial

,., Methods as studied by Satn (21).

Even though the number of system states is moderate,

*.* the multtvariable nature of the problem presents con-

siderable difficulty and pushes current computer soft-

ware to the limit £n numerical efficiency. It is an-ticipated that both global nonlinear and local linear

considerations will be essential to a good design ap-

proach to Jet engine control systems, and that both

.,4 l areas will require new innovations in the develop=ent

of computer software and effective numerical procedures.

.I c4mse., C*_,w.l ¢_lBel

'q'" " '" '*"" ACKNOWLEDGEMENTS

J ,4 .6 J #.. ,_

Fig. 15 Dynamic Progranantng Open Loop

Optimal Tlme Trajectories

The optimal time from idle to design is slightly less

than 1 second. Hany more details are given in (30).

A preliminary open loop soXucton using a con-

Jugate gradient algorithm with ti=e variable penalty (_)
functions to account for state constraints and termi-

nal condition is shca.'n in Fig. 16. The constraint

violations _hich occur in P6 are due to exterior penal-
ty functions. Feaslble direction and barrier approach- (_)

es are being studied to remedy this effect.

The fact that the problem is time optimal and the

optimal number of steps N is initially unknown does

not appear to offer any real difficulty as a few rough

computational runs quickly give one a good estimate

Future studies will involve experimentation vith

various conjugate gradient and quasi-Newton algorithms

/n combination with penalty, barrier, and augmented

The authors would like to thank the National

Aeronautics and Space Administration for their support

o[ this study under NASA NSC 3048. and the National

Science Foundation for their support under NSF Gg 37285.
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GRAPHICS A_IALYSIS OF DOMIIIA_CE

IN JET ENGINE CONTROLMODELS

Abstract

%.

i!
L_

Modern control systems design must necessarily address

the control of objects having more than one input and out-

put. For the better part of a decade, now, the most ,:aide-

ly available tool in the linear case has been LQG (Linear,

_uadratic, Gaussian) Theory, a powerful approach which

remains nonetheless indirect --- a consequence of its

spinoff from the theory of optimal control.

In the last few years, however, new alternatives to

the LQG Theory have been brought forward. More than one

of these is related to generalizations of the classical

approaches of Nyquist. An example of this type of activ-

ity' is the dominance approach of Rosenbrock. Within about

the same span of time, it has become increasingly apparent

in the jet engine control industry that the workhorse

hydromechanical teclmique for control was reachimg a

plateau in terms of being able to respond to future needs.

As attention has turned to the possibilities of ha_ing

a digital computer take over some of these tasks, interest

has grown in determining the applicability of linear

multivariable methods to families of jet engine models.

This study is one of several of such type. Using

the Rosenbrock methodologies, we have examined a two-input,

two-output, five-state jet engine model in the class

described by Michael and Farrar. Inputs chosen are jet

exhaust area and main burner fuel flow; outputs are thrust

2o



w

and high turbine inlet temperature; states are high com-

pressor speed, fan speed, fan turbine inlet temperature,

main burner pressure, and afterburncr pressure. Software

has been developed in the Speakezy Language for graphics

display and hard copy on the University of Notre Dame IBM

370/I 58 system.

The main result seems to be •that achieving dominance

in typical jet engine models is a nontr±vial task. Our

•main example does turn out to be diagonally dominant;

however we encountered definite difficulties in trying

to achieve row or column dominance, which was the main

objective. There seems to be a real need for additional

research in frequency dependent compensation, both of the

type which achieves dominance and of the type that modifies

dynamic behavior when neither row nor column dominance is

attained.
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A JET ENGINE CONTROL PROBi.EH FOR

EVALUATING HINIMAL DESIGN SOF2_dARE

Raghvendra R. CeJJi and Michael K. Sain

Department of Electrical Engineering

University of Notre Dame

Notre Dame, Indiana 45556

Abstract

The problem of designing feedforward and feedback compensators to achieve a

specified closed loop performance matrix is shown to reduce to a minimal de-

sign'problcm. Existing results for the Fl00 turbofan engine can be inter-

preted to yield the closed loop speciflcattons for the associated control

p,oblcm--and also a possible solution. All possible solutions can be enu-

merated by computing the kernel of a polynomial matrix. It is shown how this

matrix can be obtained from the formulation of the minlmal design problem.

I. INTRODUCTION

The design of compensators in multlvarlable con-

trol problems often leads to the minimal design

problem (_P), which can be represented by the

equation

el(V) c(v) = C2(v). (1)

Here, Cl, G2 and G are all matrices over the field
F(v) of rational functions in the indeterminate

'v' and with coefficients from the field F. G I

and G 2 are known, while G represents the compen-

sator to be designed. The problem is to enumerate

all realizable O's which satisfy (1) and have a

minimum number of dynamical elements.

In recent years, considerable research has been

directed toward the minimal realization problem.

We cite, for example, studies by Popov [I], Forney

[2] and Wolovtch {31. But the focus here is on

the minimal design problem instead. This latter

problem has been studied by Wang and Davison [4],

by Forney [2], and by Saln [5], who showed how it

can be transformed into a problem of finding the

kernel of a linear operator over free F[v_modules,

(where F[v] is the ring of polynomials in 'v' over

F) and proposed an algoritl_ for its solution in

that structure. First generation software has

been written {6,9| to find the kernel of a poly-

nomial operator.

Later application studles [7] have sho_m that wheQ

F is the field of real numbers and 'v' the complex

frequency 's', the computational aspect of LLa pro-

blem becomes quite demanding. Numerical chal-

lenges increase with the size of the m..trix, the

degrees of the polynomials and the varlatlon in

magnitude of the coefficients.

We propose to describe herein a =iniml design pro-

blem which is academically tractable, sufficiently

challenging to be relevant to researchers in this

area, and of such potential application as to be

of more than academic interest. We will show how

the problem is reduced to the form {1) and further

to a form suitable for solution by kernel calcula-

ting software.

We have selected a version of the problem studied

by Hichael and Farrar [8] for control of the FI00

turbofan engine. The problem is one of selecting

feedback and feedforward compensators In order to

make the overall transfer function matrix exactly

equal to some desired T'(s). The desired T'(s) is

selected by state-space optimization techniques

similar to those described in Reference [8]. In

this paper, we propose to outline briefly the tech-

niques and also present the numerical results ob-

tained.

2. HDP A_ZD POLYNOMIAL EQUATIONS

2.1 SOHE POLYNOMIAL }_DULE CONCEPTS

This work was supported In part by the Natlom_t Science Foundation under Grant ENG 75-22322 end in part

by the National Aeronautics and Space Administration under Grant NSG 3048.
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before we examine the solution of HDP via poly-

nomial equations, It Is necessary to explain some

of the termlnolo_y, q he reader may wish to refer

tO s _tondard text on algebra [I0] or multlvari-

able linear systerma [II] [or furthcr discussion.

Recall that, depending on the choice of basis, any

clement in the free polynomial _odule (F[v])" can

be represented by a list of n ring elements. In

vector apace terminology this Is familiar as a

column vector. A correspondence between such a

list and an element of the module is implicit.

The column de r._of a list is the maximum of the

degrees of all the elements occurring In it.

The column de_ree rank of an _xn matrix R(v) is
obtained thus. Form the atxn F-matrix R; the i th

column of R is formed from the coefficients In the

I th column of R(v), corresponding to its i th col-

umn de_ree. The rank of R is the column degree

rank of R(v).

For p _ n, the set {bl, b2,..• , bp}, of elements
in (rlv])n, is said to be reduced if the matrix

[b I, b2,...,b p]

has column degree rank p. If, in addition, the

last p rows of the above matrix have colu=n degree

rank p( then the set is said to ad=it a linear

dynamical interpretation [5].

A matrix D(v) of polynomials is untmodular if the

determinant ]D(v) I Is nonzero In the field F.

y

2.2 }_PJL_ POLYNOMIALHODULES

We return, once again, to the minimal design pro-

blem O_P> of linear multivarlable systems, which

can be stated as follows. Dete_ine whether there

exist rational.proper solutions for G(v) in

el(V) 0(v) - 02(v), (2)

where C 1 and G2 are matrices of rational functions;

and If so, flnd one that yields a realization with

the minimum number of dynamical elements. To do

this, we go through the following mathematical

manipulation. Let

_I(v)

Cz(v)" d-_ O)

e2(v)
C2(v)• " _ '

(O

and use the matrix fraction representation for G

C(v) - _(v) D'l(v) (S)

where N1, N2* H and D are matrices over F[v] and

d I and d 2 are polynomials in F[v]. Also, we as-

sume that C1 is k x m and C 2 is k x n, which re-
quires C to be m x n. }bking the above subuti-

tution,-we get (6),

Nl(v) _{v) D-I N2(v)
• (v) dz(v )

which can easily be reduced to (7),

(6)

d2(v)Nl(v)N(v) " dl(v) N2(v) D(v) (7)

or (8).

• [ _(v)] - 0]

-dl(v)N2(V)lL_D v ] (8)

The last equation can be viewed in a manner analo-

gous to that of a standard linear equation with
coefficients In a field.

^x - b (9)

where AcF kxm, xcF m, bcF k. Complete solution of

(9) requires us to calculate bases for the kernel

and image of K viewed as a linear operator from
the space F m to the space F k, Similarly, we look

at the first matrix in the left member of (8) as a_

"linear operator from the free F[v]-module (F[v]) men

to the free F[v]-module (Flv])k. Then, in any so-

lution [_] of (8), each of the n columns will be
contained in the kernel of the polynomial operator.

All soh, tion pairs (N,D) can thus be built up from

kernel elements. How can we tell if a solution

pair (N,D) will yield a minimal G(v)?

Although we cannot go into the tgeory of the an-

swer to the last question, we present some obser-

"vatlons which should be helpful in clarifying the

mecbanic_ of the solution. The idea.ls to assume

that for any candidate pair (N,D), the n columns

of ttm matrix [_] form a reduced set.

Thls can be done without loss of generality, be-

cause I[ thls is not the case, it is a straight-

forward procedure to remove from (N,D) a greatest

common right divisor R and obtain an equivalent

pair (N,D) such that (I0), (II) and (12) hold,

Sly) = fi(v) R(v) (lO)
D(v) =.5(v)R(v) (n)
N(v)D-Z(v) = fi(v)5-1(v) (12)

and R is non-untmodular. Then we make the follow-

ing points, which are offered without proof•

(I) N(V)D'I(v) can be realized by a linear

dynamical system If the columns of the

matrix D(v) are reduced. In such a case

N(v)b'l(v) is proper and there exists

a minimal realization A,B,C,E, over F

Buch that

C(v) : N(v) D-l(v) (13)
C(vI-A)-IB + E

Th_s condition was p_evlously defined

for'the columns in [i_] to have a linear

dynamical interpretation•

,(2) If property (1) 10 satisfied, then the

determinant lD(v)lls the characterlatie
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polynomial _vI-AI, po..tbly scaled by a

field cieme,lt; nnd

(3) the sum of the coluv, a degreeu o[ D(v)1_

the number of dynamical elements required

to realize C(v).

The problem of finding proper solutions for C(v)is

thus equivalent to o,e of selecting kernel elements

which admit a linear dynamical interpretation.

2.3 TIIE MDP ALCORITILM

The solution to HDP [5] is obtained by systemati-

cally applying the following steps. Let T(v) re-

present the k x (re+n) matrix of polynomials whose
kernel is to be calculated. We assume that k is

less than _v+n, or in other words, the kernel is

non-zero. Apply tile following steps.

(I) Obtain a basis for Ker T in this manner.

Adjoin an (=r_n) x (m+n) identity matrix

to T to get the (k+m+n) x (_+n) matrix

[,,v,]I '

By applying uni.-,odular column operation

type transformations, reduce the first

k rows to a column echelon form. Let

the final form of the matrix be

ell 0 ]
El2 £22

(2) The columns of E22 are a basis for Ker T.

Obtain a reduced basis set from these by

further application of suitable unlmo-

dular transformations.

(3) From the elements of the reduced basis,

select (if possible) n elements =hat ad-

mit a linear dynamical interpretation,

such that the sum of the column degrees

is the least possible.

Failure of the algorithm indicates no solution

existing to _P, and success yields a solution

automatically. The importance of the algorithm

arises from the fact that all possible solutions

can be built from the reduced basis alone.

3. _P IN JET ENGINE CONTROL

3.1 PROBLDI DESCRIPTION

{CAp,Bp,
6_ _ II _LCp,Vp)

Figure I. Compensation Problem

In Fig.re l, the plant in the linearized model of

the FIO0 Jet enF, Ine. Thls In a 2-1nput, D-state,

2-output model. The rrodel hohls for slx_l| varla-

tlonu aro_,ad a nteady _tate obtained at a power

level an?le (i'I.A) of 47", which corresponds to a

point approxlm,ltely mtd_,'ay between Idle aud r_lxl-

m,mno_afterb, rnin_, power. Ap. Bp. Cp and Dp repre-

sent the carrel;pending state descrlpt Ion matrices.

These were obtained from data given in Reference [8]

and are listed in Table I. The underlying dynamics

are represented by the equations (14) and (15).

6x - Apex + BP6u (14)

6y = Cp6x + Dp6u (15)

TABLE I

STATE DESCRIPTION MATRICES FOR

JET ENGINE (PLA=47")

Matrix/ Matrlx Elements

Ap

Bp

-57.096 3.613 -10.211 -5.481 -2.715

19.832 -72.34 30.295 40.972 15.327

0.66 4.496 -3.601 -0.011 -2.808

1.326 2.313 -0.809 -3.032 -0.821

0.882 0.703 2.922 1.471 -4.596

1.017 39.792

-0.125 4.181

-0,077 -0.382

-0.088 -0.565

-3.563 -0.385

Cp -0.037 0.031 -0.016 -0.042 1.368
1.081 0.149 -0.057 0.001 -0.036

0.546 0.O18

Dp -0.013 -0.086

The inputs are (1) Jet exhaust area and (2) main

burner fuel flow. The five states are (1) high-

compressor speed, (2) fan speed, (3) fan turbine

inlet temperature, (4) main burner pressure and

(5) after burner pressure. The two outputs are

(i) thrust and (2) high turbine inlet temperature.

6x represents the states being fed back throughthe

dynamic compensator K(s). G(s) is the compensator

in the forward path.

The design problem is to find C(s) and K(s) such

that 6v is related to 6z by some desired transfer

fnnctlon matrl>: T'(s). The optimal integral con-

trol configuration of Michael and Farrar [8] is a

specific solution, which requires ideal integra-

tions in C(s). The optimal integral control con-

figuration is subsequently discussed in this paper.

The advantage of reformulating the problem as in

Figure 1 is that it leads to MDP, and thence a ker-

nel problem which yields all solutions of a parti-

cular class. For example, it may be possible to

I_ve a G(s) that does not call for Ideal Integra-

tors. I[ so, hopefully it can be found using the

polynomial techniques.
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$cfore _e proceed with the problem it may be ue11

to cougidcr whether specification of clo:_ed loop

performance _atrice_ is a sound Idea with regard
to Jet engine_. In the next sectlon we will show

tim( nt least in one instance, the essence of the

idea tms already Leen used in the literature [or

designing controllers. Ne will choose the same

reBult as a baols for obtaining closed loop speci-

fications for our problem.

3.2 HATtt_.LATICAL FORHULATION

In order to formulate mathematically the above

"exact model nmtching" problem, we redraw Figure I

as Figure 2.

Figure 2. Plant As Two Transfer Functions

With PI(S) and P2(s) as in (16) and (17), and I

tn each case the confor_l identity taatrix t

Pl(S) • CpfsI - Ap) -1 Bp + Dp 416)

P2(s) - (sl - Ap) "1 Bp (17)

It follows Immediately that

6y - P1 _u (18)

6x = P2 6u (19)

The design goal then translates into the equation

(20),

+ P3(s)) -1 P3Cs) - T'(s) (20)(I

_here

P3(s) - Pl(s)(I + K(s)P2(s)) -1 O(s) 421)

If we assume all necessary inverses to exist, (20)

can be simplified to (22)

P_l(a) - T"l(s) - t (22)

and further, by substitution o[ (21) to (23).

C'I(s)(I ÷ g(s)P2(s)) P;l(s) - Tt'l(s) - I" (23)

or (24).

(l + g(s)P2(a)) - C(s)(T''l(s) - I) rl(a) (24)

If we eel

(T'-l(n) . I)Pl(a) - P4(s) (25)

(2_) becomes (26),

(26)

_h_re superscript T denotes tnatrix transposition.

Equation (26) is reduced to familiar _qP form to

yield

T(s)] IGT(s)I- I (27)t,,+,.,i-P, ___
LK'r(s)]

Perform the obvious next step, Let

T

P2(s)] = HCs) (28)[P4(s)i - d(--_)

"[GT(s)-]- N(s)D-l(s)_Z(s)j (29)

where H, N and D are matrices over R[s] and d is a

polynomial in R[s]. It can be shown [6] how to

realize both C and K with one set of d>mamics gov-

erned by D(s) . Now we have (30).

H(s) • [N(s)D-l(s)] - t (30)
d(sJ

o_ (31).

[H(s)_- d(s)I] [N(sqs_;_ = [01 (31)

Equation 431) is a standard kernel probl6m suitable

for solution by kernel calculating software. We

note that P4 is 2x2 and P2 T Is 2x5, which tells us
that the matrix

T(s) = {H4s) : -d(s) x] 02)

vould be 2x9.

4, CLOSED LOOP SPECIFICATIONS FOR

A JET ENGINE CONTROL PROBLEH

4.1 TIlE APPROACII OF HICIIAEL A,VD FARRAR

I Plant
_tl _. 4Ap, Bp,

_. Cp,Dp), I

()-..

Figure 3. Linear Optimal Control
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The stnndnrd linear opti_al control config_iratlon

Is show+l in Figure 3. C t and C2 are obtalucd as
outllnud in Reference [81 to minimize a performance

index o{ the type

j .. t_l (6yTQ6y + 6;TR6; + 6_,Ts6"y)dt (331

The problem is transformed to a linear state feed-

back lay by considering the 6u's and tile 6x's as

states of an extended syste,_ l_avlng 6w ss its

input vector.

The matrices Q, R and S for our problem are listed

in Table II,

TABLE II

WEIGHTING MATRICES NITII OPTI}_L

INTEGRAL CONTROL SOLUTION

Matrix/ Matrix Elements

50,000 0

0 10,000
q

550 0
R

0 175

0 0
$

0 20,000

0.509 0.268 1.979 2.171 2.098
L

-2.137 -0.377 -0.223 -0.776 -0.227

8.329 -1.126
g

2.811 -1.842

The optimal integral control configuration Is

shown in Figure 4.

I 1 ---1

Flgure 4. Optlmal Integral Control

It has been shown In [g] that the H and L matrices

are related to the G I and G 2 matrices of Figure

The resulting L and _ matrices as obtained fro_ G 1

and G 2 are shown In Table II. The advantage of

the control scheme of Figure 4 comes from the

added dynamics of the integrators. This causes

the steady state error to go to zero, even in the

presence of plant parameter variation.

4.2 EXACT HODEL HATCIIIN_ APPLIED TO TIIE PROBLL_

It Is shown here that the problem of going frc, a

linear opttma l control to optt_al integral con-

trol is cscntfnlly onc of matching closed loop
tran.;for function _triccs.

The transfer function T'(s) relating the output _v

to the l_pur 6z can be shown to be as (See Figure

3) in (34), if 6v = E6y,

Z'(s) - EPsCs) [sl - e6Cs)] -I M (34)

where

Ps(S) - Cp(sl - Ap) -I Bp + Dp (35)

r6(s) _ Cl(SI - Ap) "1 Bp + O2 (36)

In the actual problem being considered, E is taken

to be be the 2x2 identity matrix and its presence

as a factor Is ignored.

Next, we use the relation given in [8], that is,

M - -H 07)

LEC_ED p " [GI, C2l aS)

and thereby continue the proof.

that in Figure 3,

T'(s) = -EPs(s)(sl - P6(s)] "I H (39)

Second, we see from Figure _. that

T'(s) " -EPs(s)[sI - PT(S)] -X H (40)

where

PT(S) - HE P5(s) + sL(sI - Ap) -1 8p (_1)

It is easy to show that both equations for T*(s)

are the same, by comparing P?(s) and P6(s), with

the aid of (37) and (38).

Thus, the systems in Figures 3 and 4 have the same

overall transfer function matrices.

First, it is seen

5. DISCUSSION OF THE KERNEL PROBLr21

Ln the preceding sections, we have shown how, start-

ing with the state matrices for the plant, and the

compensator matrices L and H in the optimal inte-

gral control scheme, we arrive at a standard ker-

nel problem. In the final analysis, the design

problem of Section 3 yields a 2x9 matrix of poly-

nomials, whose kernel must be computed for a com-

plete solution of the problem. We cannot repro-

duce the entire matrix here due to lack of space.

Bowever, we mention that a typical element in the

matrix is a [3th degree polynomial as shown in

Figure 5. Further, we see a wide range of varia-

tion In the magnitude of tim coefficients. This

makes the problem Just large enough to give a

thorough test to kernel calculating software such

as (6}.
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T--

1.17 EiO s 3 -1.37

+4.40 ElO s 4 -4.99

44.06 ElO s 5 -4.21

+I.18 EIO s 6 -I.07

-1.24 E9 s_ +1.49

-1.26 E9 s° +1.99

-2.07 E8 s 9 +1.99

-5.55 E6 s I0 46.93

-4.80 E4 s ll +8.33

-7.09 E1 s 12 +2.38

+4.5 E-I s 13 -l.O0

EIO 62

El0 s 3

EIO s 4

EIO s 5

E9 s 6

E9 s 7

E8 s 8

E6 s 9

E4 sI0

E2 sII

E0 s12

Figure 5. Polynomial Idatrix

We now show how the results of Michael and Farrar

can be interpreted to establish the existence of

a solution to the MDP problem that has been formu-

lated. To do this compare Figures I and 4." Then

Figure 4 is seen as a possible solution to the

problem of Figure i. This happens because in

Figure 4 we are able to achieve the closed loop

specification T°(s) by setting

c(s) = -A_! (42)
s

K(s) - -L (43)

Combine (42) and (43) with the matrix fraction

representation

- LK'(.) J

We can now identify

[:÷I= (45)

D = s_ (46)

Then the two columns (In_[s]) 9) of the matrix _-]

formed from (45) and (46) will both be in the

kernel of the polynomial matrix T(s) obtained from

the problem. This assures existence of a solution

to Khe kernel problem we have formulated.

6. CONCLUSION

Ne have presented a kernel problem which we be-

lleve will be most Interesting to researchers in

the area. So far the attempts for mechanizing the

solution Of such problems have been Of a prelimi-

nary nature [6]. Existing problems in the litera-

ture tend to be of an academic nature. Elllott

[91 has reported good success, but the problems

tlmt I_ve been tried are of very llmltedconplcxlty.

We feel that the problem presented here is chal-

lengi.g and worthwhile of numerical study.

b'e have mentioned before, that when the kernel

calculating nor,ware of [6] was u,;ed, a perfect

solution was not obtained. As a sketch of our

numerlcnl experience we should llke to record tkat

out of seven elements in the reduced basis, five

were of first degree. Ilowever, this solution was

not conclusive, because attempts to generate the

solution of (45) and (46) from these five columns

have not yet been successful.
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Abstract

Conflicting requirements of stability and non-interaction can present demanding

desigD questions in control studies on Jet engine models. It is shown that a

step-by-step solution exists, at least in some cases. However, in some situations,

interaction-free design is very difficult to achieve. The features of both these

possibilities are illustrated with the aid of MacFarlane's characterlstlc locus.

I. INTRODUCTION

The Bode [1] and Nyquist [2] classical frequency

response approaches for the analysis and design of

single-input, single-output systems resulted in a

very flexible and useful design technique because

it allowed the conflicting requirements of stabil-

ity and accuracy to be treated simultaneously by

means of a single form of representation - the

open-loop frequency response function of a complex

variable. Then came the state-space methods which

moved the focus away from graphical techniques

towards optimization methods. The potential and

elegance of state-space methods stems from the

systematized utilization of the properties of

linear vector spaces. The trade-off, of course, is

that one loses a considerable portion of the design

intuition which is of the essence in the classical

frequency-response approach.

MacFarlane [3] has attempted to combine the essence

of the two abovementioned approaches by adopting,

as his basic tool, linear vector spaces defined

over the complex field. In this way he has de-

veloped a general vector frequency response ap-

proach to the analysis and design of multivarlable

feedback systems, with the classical scalar design

approach as Just a special case of this general

approach.

In this paper, we will introduce the generalized

characteristic locus method developed by MacFarlane

[3], and show how this method can be used for a

step-by-step design of multivarlable compensators.

We will not discuss the theoretical basis of the

design method in much detail, due to limitations of

space; for that, the reader is referred to [3],

[10]. Instead, since a major test of the effec:ive-

hess of a design method is how viable a tool it is

for the actual design of reasonable compensators in

real-world situations, we will illustrate, here.

the use of the generalized locus method by means of

a Jet engine example.

2. THE PLANT

The basic plant that we have selected is the F-!O0

turbofan engine, as described by Michael and

Farter [4]. Specifically, we consider a two-input,

two-output, five-state linearlzed model at a power

lever angle (PLA) of 47 °, which corresponds tO a

region roughly midway between the engine Idle con-

dltlon and maximum nonafterburnlng power. The in-

puts being considered are Jet exhaust area and =aln

burner fuel flow, the outputs are thrust and high

turbine inlet temperature, and the five states are

high-compressor speed, fan speed, fan turbine inlet

temperature, main burner pressure and afterburner

pressure.

The A, B and C matrices for this llnearized Jet

engine model, at a PLA of 47", are shown in Figure

I. Actually, the system that we are first consider- -

ing Is s simplification obtained by excluding the D

3O



m

matrix. Next, the plant transfer function matrix

is obtained by means of the Fadeeva algorithm [5],

and is given by

"(-4.9s4-667.3s 3

c(s) =

-23068s2-82206s

-85325)

(1.4ed+137.6s 3

+2206.3s2+3298.9s

(-2.4s4-188.1s 3

-1093.3s2+27647s

+93090)

(43. Ts_3780o5S 3

+28827s2+86361s

,-179B.1) +89748)

(1)

sb+140.7s4+5337.6s3+38691s2+l19690s+133389

3. TIIE FEEDBACK SCHEME

The feedback scheme that we employ is based on the

Input-output approach to compensation. In Figure

2, G(s) is the plant that we just described. K(s)

is the feedforward compensator to be designed. With

respect to our example, the compensator K(s) would

be represented by a 2x2 matrix, each of whose ele-

ments belongs to R(s), the field of real rational

functions in s. Note also that since we will be

dealing with the generalized Nyquist approach to

design, Figure 2 shows a unity feedback scheme.

Considerable care is advisable in considering this

tool when the feedback matrix is not proportional

by an element of R(s) to the identity matrix [6].

4. THE DESIGN PROCEDURE

The design procedure attempts to strike a balance

between four conflicting objectives: stability,

Integrlty_ interaction and accuracy. How each of

these individual aspects of the closed-loop per-

formance is determined is elaborated below.

4.1 STABILITY

Let Q(s) denote the composite system in the forward

path, that is,

q(s) = C(s) z(s). (2)

The closed-loop transfer function matrix T(s) is

given by

_(s) = [I + Q(s)]-I Q(,). (3)

Based on MacFarlane's approach [3] to the problem,

we have the stability theorem that the difference

between the number of right half-plane poles of the

closed-loop configuration and those of the open-

loop configuration is equal to the sum of the num-

ber of clockwise enclrclements of the "usual"

critical (-i,0) point by the characteristic locl of

Q(s), where, by the term "characteristic loci" of

a particular matrix we mean the loci of the elgen-

values of that matrix for all values of s on a

"usual" Nyqulst contour,

For a detailed discussion of the above theorem, the

reader is referred to [3], [10]; here, we illustrate

the theorem by applying it to the Jet engine prob-

lem given by Equation I. We let s follow the usual

clockwise Nyqulet contour, and compute the

eigenvalues of (i) for each value of s. Thus we

obtain the characteristic loci q_(s) of G(s); these

locl, for s - J_ with w varying from 0 to -, are

shown in Figure 3(a) and (b).

To analyze these curves in terms of closed loop sys-

tem stability, we first note that the open-loop

characteristic polynomial (OLCP) is given by

sb+ldO.7sd+5337.6s3+38691s2+l19690S+133389. (4)

The zeros of the OLCF are found to be..;/"

-79.207,-53.135,-2.389,-2.967+j2.113,-2.967-J2.113.

(5)

Since all the zeros of the OLCP are in the left

half-plane, the system is open-loop stable. From

the stability theorem then, the corresponding closed-

loop system will be stable if and only if the net

sum of critical point enclrclements by the charac-

teristic locl of G(s) is equal to zero.

Referring once again to Figure 3(a) and (b), and

taking the critical point as (-I/k,0), (that is, with

equal gains k in each loop) we deduce the followlns

stability conditions:

(i) For 0<k<1.27(-ii.79), the closed-loop

system is stable.

(ii) For k_1.27, the locus (a) contributes

clockwise encirclements of the critical point; thus

the closed-loop system is unstable for k_1.27.

4.2 INTEGRITY

A multivariabla feedback system is said to be of

high integrity if it remains stable under a stipu-

lated set of failure conditions. Consistent with

MacFarlane's concept of interaction-free system de-

sign [3], we will focus upon loop-failure conditions,

that is, we will be designing compensators so that

an output depends mainly upon one particular input,

so our integrity test will involve testing the sta-

billty of the system with feedback only around a

particular loop (and with all other loops open).

Am easure of this stability is obtained by applying

the Nyquist encirclement theorem to the frequency

response locl of each of the diagonal elements of

G(s). For detailed tables and figures, the reader

is referred to [i0]; for purposes of brevity, we

merely state here that on applying this integrity

test to the Jet engine example of Equation I, we

find that the stable region is limited mainly be-

cause the integrity, with loop 2 open, is poor.

This is intuitively pleasing in terms of an inspec-

tion of the I-i element of G(s); it would appear

that the application of high gains around loop 1

will produce a positive feedback because of the
minus signs. To remedy the situation, we change the

sign of this feedback loop by means of an elementary

compensator matrix

. ,o,
This greatly improves the system integrity under

loop-failure conditions; the resultant open-loop
transfer function matrix is
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qlCa)- G(s)KI. (7)

Note that we have once again to perform a stability

cheek on the new open-loop transfer function matrix

(7). The steps of this calculation are shown in

[10] and lead to the conclusion that, subject to

the bound that k should be positive, the closed-

loop system is now stable for high gains. Hence it

is fair to surmise that the relatively poor stabili-

ty properties were primarily due to lack of integrl-

ty; having corrected this, we nex6 consider inter-

action.

4.3 INTERACTION

Consider once again the closed-loop multivariable

feedback system of Figure 2. Now, if we apply ri(s)
to the ith input, we will obtain some response from

each of the controlled outputs {c_(s):j-l,2,...,n}.
In Interaction-free system design_ one desires a

specific output ci(s) to respond to r_(s) and all
the other outputs {c.(s):J-l,2,...,n;_i) to remain

"small". Thus the t_rm "interaction" signifies the

set of relationships that influence the way in which

a particular input r.(s) affects the set of outputs

(cjCs) :J=l,2 ..... n;j)i}.

It has been shown [3] that closed-loop interaction

at low frequencies will be suppressed provided the

modull of the characteristic locl of Q(s) are

sufficiently large, and that high-frequency inter-

action will be suppressed provided the angular mis-

alignment Bi(s) is small between the characteristic
direction set of Q(s) and the standard basis dlrec-

tion set in R n, where the "characteristic direction

set" is Just the set of eigenvectors associated with

the characteristic loci, and the "standard basis

direction set" is

{(lO0...O)t,(OlO...O) t ..... (O0...O1)t}. (8)

Thus it is convenient to consider interaction over

the whole frequency range by means of two sets of

graphs:

Ca) the moduli of q_(Jm) versus m

(b) the mlsallgnmenE angles 81(Jm) versus _.

Figures 4(a) and (b), 5(a) and (b) show plots of the

moduli of the characteristic loci versus frequency

and of the angular mlsallgnment of the character-

istic directions versus frequency for the open-loop

transfer function matrix Q1(s), (7), of our example.

An inspection of these ploEs shows that there are

interaction difficulties mainly at low frequencies.

To compensate this, we use Rosenbrock's diagonal-

dominance ideas [7], [8] and insert the controller

factor

= Ql-l(o)Is, (9)K2(s)

where

F85325 9309_

QI(O) -_798.1 8974_ (I0)
133389

The modified open-loop transfer function matrix is

Q2(a) - QICS) K2(s) (ll)

which, hopefully, will display better interaction

characteristics at low frequencies. Figures 6(a)

and (b), 7(a) and (b) show that this is indeed the

case; whereas the alignment of the characteristic

directions has remained practically unchanged, the

moduli of the characteristic locl are larger at low

frequencies, so that the design is quite satisfacto-

ry with respect to both low-frequency and high-

frequency interaction.

Figures 8(a) and (b) show the characteristic locl of

the current open-loop transfer function matrix

Q2(s). They are of particular interest, since they
typify the sltuatioo in which the transfer function

matrix has an "s" in the denominator, corresponding

to an open-loop pole at the origin. Thus, to find

out the direction in which the characteristic locl

of Figures 8(a) and (b) close, we must exclude this

pole by means of an indentation (say, a small

counter-clockwise seml-circle) at the origin.

Figures 9(a) and (b) give two families of curves

corresponding to seml-circles of different radii at

the origin, where _ varies from 0- to 0+. It is

noteworthy that the curves are topologically con-

sistent. From Figures g(a) and (b), 9(a) and (b),

we see that both characteristic loci "close" in the

clockwise direction and that the system is stable;

so we proceed to the final stage to adjust the over-

all performance.

4.4 ACCURACY

The overall percentage error of the closed-loop

system of Figure 2 is defined as

le(jm) ll _ <e(_w)'e(_m)>i/2 i00%. (12)[r(j_)Ii _ lOOZ
<r(jw) ,r(Jw)> 1/2

Briefly, good closed-loop accuracy may be obtained

by injecting gain along the characteristic direc-

tions [3]. Since, in our example, the characteris-

tic directions are well-aligned to the standard

basis directions, especially at higher frequencies,

we can effectively inject gain along the character-

istic directions by employing the simpler procedure

of increasing the column gains. Selecting a diago-

nal "gain-injecting" controller factor

°
we have the resultant open-loop transfer function

matrix

Q3(s) = q2(s) K 3

_790.8s4+lO7250s 3

+3690229s2+13049634s

+13338558)

-(363.68s4+34097s 3

+444918s2+803767s

_(l17.7s4+13921s 3 --

+399034s2+942715s

+15.3)

(687.23sd+59726s 3

+474602s2+1366945s

.73) +1333912)

s6"J'9+140.7sS+5337.6s4+38691s3+l1969Os2+1333_9s

(14)

The time response curves of the two outputs of the
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final compensated system, co a unit step in each of

the inputs by turn, are illustrated in Figure I0.

From this figure, we see that interaction is negli-

81ble and that the time responses are fast and

accurate. Hence our design is complete.

5. SOME FEATURES OF GENERALIZED LOCI

Now that we have worked through the design of a

multivariable compensator using the generalized

Nyqulst locl, we are in a position to comment on

certain features which characterize them. One

trivial difference between these loci and the famil-

iar single-variable Nyquist loci is that in the for-

mer case, the characteristic loci need not start

from the real axis on the complex plane for s-0,

since a matrix all of whose elements are real can

have complex elgenvalues. Another difference is

that, since the system may have a non-zero D matrix,

that is, there may exist a direct coupling between

the input and the output, the characteristic loci

need not end on the real axis for s-J m either.

Another interesting exercise is to deduce the loci

for s c-j- to s=O- from the loci for s=O+ to s=J -.

A little thought shows us how to deduce them, de-

pending on the elgenvalues at 0 and -. If the eigen-

values of both matrices G(0) and G(-) are real, the

locl for s=-J- to s=O- are mirror Images about the

real axis of the loci for s=O+ to s-J-. On the

other hand, if these eigenvalues are complex con-

Jugate pairs, the "positive" half of one locus will

be the mirror image of the "negative" half of an-

other locus, and vlce-versa.

Yet another crucial question for Nyquist consider-

ations is the behavior of the loci in the complex

right half-plane. Barman and Katzenelson [9] have

shown that, for stable systems such a_ the Jet

engine model under study here, there are exceptional

points to be heeded in Re(s)>0. This feature pre-

cludes any easy approach to identifying "individual"

closed-path characteristic loci, although, by the

addition of branch cuts from the exceptional points,

together with a corresponding modification of the

Nyquist contour, it is possible to achieve this

goal [9]. The problem, however, is that computation

of exceptional points off the imaginary axis, as

well as the branch cuts, presents an added compu-

tational burden. It seems much easier, instead, to

use the above approach of "plecing together" the

various loci; but this may not always be possible,

as the following extended Jet engine example in-

dicates.

The extended example that we now present includes

the D matrix also (at PLA=47 °) from Figure II in

addition to the A, B and C matrices included earli-

er. The control inputs are the main burner fuel

flow and the Jet exhaust area; the outputs are

thrust and the high turbine inlet temperature. The

transfer function matrix of the resultant two input-

five state-two output plant is given by

c(a) -

-(.018s5+.145s 4

-92.05s3-396.9s 2

+29801s+95491)

(-.086sb+31.63s 4

+3321.bs3+25500s 2

_76068s+78277)

(.546sb+71.gs 4

+2247s3-1945s 2

-16855s-12495)

(-.013sb-.437s 4

+68.2s3+1703.3s 2

+1742.9s-3532.2)

(15)

s5+140.7s4+5337.6s3+38691s2+l19690s+133389

In conformity with the procedure that we followed in

the earlier example, we first obtain the character-

istic Io¢i of G(s), as shown in Figures 12(a) and

(b). Note that, in contradistinction to the pre-

vious example, the locl do not end at the origin, be-

cause we have a non-zero D matrix with complex ellen-

values in this case. Furthermore, our earlier ap-

proach of "piecing together" two individual loci

does not work here; in fact, only one closed, prop-

erly parameterized curve can be formed from these

figures. This curve is shown in Figure 13 and re-

quires use of Figures 12(e) and (b) as well as

their mirror images about the real axis.

A question that now arises concerns the information

that we can derive from such an unusual situation,

that is, that the locus of Figure 13 cannot be sepa-

rated into two individual loci. It is easy to see

when such a situation will occur. It occurs, for

our 2-5-2 case, if and only if one of the matrices

G(-), G(0)

has distinct real eigenvalues while the other has

complex conjugate eigenvalues.

Equally important to us, however, is wha__/_tthis situ-

ation of non-decomposabillty into individual locl

tells us. When we proceeded, with this Jet engine

example, to try to simultaneously achieve low inter-

action and good transient response, we encountered

considerable difficulty. We could achieve one or

the other, but not both. It is interesting to make

the conjecture, then, that the difficulty in achiev-

ing low interaction while simultaneously obtaining

good transient response is related to the fact that

the locus of Figure 13 cannot be decomposed. If

that is true, a possible design strategy could be to

apply a pre-compensator to modify the eigenvalues

at 0 and - and then proceed with the design steps

in the usual way.
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Abstract

i

The use of the Nyquist criterion has been a valuable tool in

designing single input-output control systems. This work addresses

itself primarily to the problem of applying this criterion to the

multi input-output system. The concept of the return difference and

its determinant play an important role in this study.

The purpose of this work is to investigate the Direct Approach

method for the design of multivariable control systems and to apply

this method to a jet engine model.
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A GRAPHICAL APPROACHTO SYSTEMDOr,IINANCE

Abstract

by

Robert Michael Schafer

In recent years, increased attention has been paid to

the use of frequency domain techniques as applied to multi-

variable control systems. Particular emphasis has been

given to the problem of achieving low system interaction.

This thesis presents a graphical approach to the

problem of achieving system dominance, one such criterion

for low interaction. The method is successfully applied

to a series of Jet engine control problems.
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Abstract

Following Rosenbrock's ideas regarding the advan-

tages of dominance in linear multivarlable control

systems, a new graphical technique is used for the

design of comFensators that achieve dominance. The

technique is illustrated with an application to the

problem of designing compensators for a linear tur-

bofan-engine model. The resulting design is put in-

to perspective by examining it in the light of two

other multlvariable frequency-domain methods. One,

MacFarlane's method of characteristic loci, is used

to realize a final design for stability and low

interaction. The other is a direct technique based

upon the algebraic expansion of the determinant of

the return difference in terms of it's elements.

Results from simulations carried out on the NASA

DYNGEN software are included.

1. Introduction

Recent years have witnessed a renewal of interest in

frequency domain design methods for linear multi-

variable control systems. The preponderance of

these ideas are closely related to classical Nyquist

constructions on the determinant of return differ-

ence. In thls paper, we use three such methods to

design a compensator for a two-input, flve-state,

two-output linear model of a modern two-spool turbo-

fan Jet engine obtained from the DYNGEN digital Jet

engine simulation.

Rosenbrock [i] has related the classical Nyquist

construction on the determinant of return differ-

ence to corresponding classlcal constructions on the

dlagonal elements of the return dlfference--pro-

vided these diagonal elements "dominate" their rows

or columns In an appropriate manner. Focussing the

design interest on achieving dominance in this

sense, Section 3 presents a new graphical technique

to help with this aspect of design. Next, Section

4 utilizes the generalized Nyqulst plots to obtain

an acceptable compensator design. The ideas of

generalized Nyqulst plots were introduced by

MacFarlane [2], who related the determinant of the

return difference to it's spectrum when regarded as

an appropriate linear operator.

In Section 5, we utilize a direct technique which

emphasizes the algebraic relationship between the

* _is work was supported in part by the National

Science Foundation under Grant ENG 75-22322 and in

part by the National Aeronautics and Space

Administration under Grant NSG 3048.

elements of the return difference and it's deter-

minant. Typically, when it achieves user satis-

faction, this method does so with greater speed,

and fewer concepts, than it's competitors. The Jet

engine model is introduced In Section 2, which also

establishes the notation for succeeding sections.

Finally, in Section 6, we give results of simula-

tions to evaluate the performance of the system.

2. Jet Engine Model and Return Difference

Determinant

The linear model used for the study is based upon

data obtained from a DYNGEN simulation. It is

specified by the equations

= Ax + Bu (i)

y - Cx + Du (2)

where x, u, y denote the state, input and output

vectors respectively. The inputs are fuel flow

and nozzle area; the five states are compressor

rotor speed, fan rotor speed, burner exit pressure,

afterburner exit pressure and high pressure turbine

inlet energy; while thrust and high pressure tur-

bine inlet temperature constitute the two outputs.

We next consider the problem of designing control-

lers for the plant. The underlying feedback con-

trol scheme is shown in Fig. I.

r_ K(s) =_

Flg. 1

G(s), the plant,

Plant

C(s)

Feedback Control Scheme

represents the jet engine model, that is,

C(s) - C(sl - AI-IB + D. (3)

K(s) represents the rational compensator to be de-

signed. G(s) can be computed as:

" !

-502sS-3.64ESs4 a 4104s5+l.93E6s4
I

-1.78E7s3+6.15E9s 2 ,+I.69E8s3-1.44EIOs

+1.26Zl!s±6:2SE!l" L--6.I7E10s_6=59ElO

-14.554s5+l.33ESs 4 20.46s5+l.69E4s 4

+4.96ETs3+3.TE9s 2 +7.03E6s3+l.12Egs 2

+2.82EIOs+4.95EIO +5.63Egs+5.41E8

G(s) = sS+609.57s4+l.184ESs_+7.3E6sZ (4)

+6.52E7s+I.62E8
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Central to tile application of Nyqulst type Ideas to

multivarlable systems is the return difference ma-

trix, which in this case becomes [l+G(s)K(s)].

It's principal use arises from the relation of the

closed loop charaeteristlc polynomial (CLCP) to the

open loop characteristic polynomial (OLCP) which

can be stated, in the manner of [i], as

CLCP

OLC----P= det[l+G(s)K(s)], (5)

where equalJty is understood up to a real constant.

Of primary concern here is the behavior of det(l+GK)

for values of s on the standard Nyquist contour

(SNC), which encircles the open right half plane

clockwlse with indentations into the left half plane

around poles and zeros on the imaginary axis. In

practice, plots are made for values of s on the

positive imaginary axis. Stability can then be de-

termined from plots of det(l+GK) in conjunction with

knowledge of the open loop characteristic polynomial.

Also interesting, of course, is the use of such plots

to aid in the choice of a suitable K(s).

3. CARDIAD Plots and Dominance [3,4]

The CARDIAD (Compensator _cceptability Region for

DIA_____gonalD_omlnanee) plot is a graphical approach to

the problem of choosing a compensator that will

achieve system dominance. A system is said to be

row (column) dominant [I] if the magnitude of each

diagonal element of the open loop transfer function

matrix is greater than the sum of the magnitudes of

the off diagonal elements of the row (column) at all

frequencies. In the 2x2 case being considered in

this paper, the dominance condition reduces to the

magnitude of the diagonal element being greater

than the magnitude of the off diagonal element of

the row (column). Consonant with the Rosenbrock

approach, the CARDIAD plot analysis is applied to

the inverse of the plant G(s). As a notational

point, the inverse _lant transfer function matrix

will be denoted.by G(s) and the inverse pre-

compensator by K(s).

The specific appllcatlon to the Jet engine design

problem Involvea trying to find a compensator K(s)

such that K(s)G(s) is row dominant. Without loss

of generality, the form of K(s) will be restricted

to

where

_i(s) = xi(s) + Jyi(s), i • 1,2. (7)

If G(s) and _(s) are each evaluated at a frequency

Jw , the equation for dominance of the ith row of
o_

K(s)G(s) becomes a function fd(xl,yl)whlch describes
a paraboloid in three-space. -The £_tersectlon of

this parabolold and the complex plane is a circle

which is the locus of the values of x i and Y4 such
that the magnitude of the diagonal element of the

ith row of _(s)G(s) is equal to the magnitude of

the off diagonal element of the row. Minima and

maxima analysis of the function f. reveals that

values of x i and y. on one side o_ the circle willI
make the. system dominant, whereas values which lle

on the other side of the circle will not. In the

CARl)lAD plots, this differentiation is made by
d:awlng a solld circle if the acceptable values of

x and y. lle Innide and dashed circles if the
" i
acceptable region is outside.

If the above procedure is repeated over a range of

frequencies for each row of the system, and the

circles of intersection dra,_n, a plot describing

the acceptable values of the complex number x i +

JYl for each frequency results. In this way, the

acceptable range of the function B_(s) such that
the Ith row of /_(s)G(s) is dominanf is described.

The analysls of the CARDIAD plot for a given row

of G(s) proceeds as follows. If the origin of the

plot is contained inside all solid circles and is

excluded by all dashed circles, the row of G(s) is

dominant uncompensated. If the row of G(s) is not

dominant uncompensated, the CARDIAD plot is next

checked to see if there is a constant entry 8 i that
will make K(s)G(s) dominant at all frequencies.

For this to be the case, there must be a point on

the real axis that is included in all solid circles

and excluded by all dashed circles.

If ther_ exists no constant 8_ such that the i th

row of K(s)G(s) is dominant a_ all frequencies, the

CARDIAD plot is used as a guide to design a fre-

quency dependent 8_(s) that will achieve dominance.

This is accomplished by realizing a function 8i!s)
whose value at Jw lies inside the circle assocl-

• O

ated wlth the same frequency in the CARDIAD plot if

that circle is solid, or outside if that circle is

dashed. This approach is illustrated by consider-

ing the DYNGEN problem.

5j

3j

0j

.

"x .

-SJ _

- -7 -4 0 i

Fig. 2 CARDIAD Plot Row 1

Uncompensated

The initial CARDIAD plots of G(s) indicate that

row 2 of G(s) is dominant uncompensated since the

plot consists only of dashed circles, which all

exclude the origin. The plot for row i, however,

shows that this row is not dominant uncompensated

and also that there is no constant entry in the off

diagonal element of row 1 of K(s) that will make

the row dominant at all frequencies. This is

easily seen since all the circles in this plot are

solid and there is no point on the x axis that is

included in all the circles. Moreover, the plot

hints that there will be difficulty finding a 81(s)
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Fig. 3 CARDIAD Plot Row 2
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10.

that Will make this row of _(s)_(s) dominant because

of the complexity of the plot and the small radii

of the low frequency circles which necessitate a

very close fit.

To facilitate the p[ocess of finding a compensator

that will make K(s)G(s) dominant, the system was

first precompensated with

[0
". _. .

Space limitations do not allow the CARDIAD plots of

Kl_(S) to be included, but the new plots are the

same shape as the CARDI_.D plots ofAG(s) with two

ma_or changes. The row i plot of KIG(S) is the

same shape as the row 2 plot of G(s) with dashed

circles changed _o solid circles. Similarly, the

row 2 plot of KIG(s) is the same shape as the row 1

plot of G(s) wi_h the solid circles changed to

dashed circles.

The problem of finding a Kp(s) such that Kp(s)KiG(s)

_s^domlnant is now simplified. Since row 2 of -

KIG(S) is now dominant uncompensated, the off diago-

nal term in the second row of K2(s) is left a zero,

w-_th the provision that if it later proves helpful

in compensation, the entry may be chosen to be any

constant that lies outside all of the circles. To

make row i of _l_(S) dominant, the off dlagorml

entry in row I of _2(s) must follow the semicircular

path through the complex plane described by the

C_kRDIAD plot for this row. A fit was made to thls

shape and the resulting K2(s) was

R2(s ) = 1. - 1.2359s (g)

1

The CARDIAD plots of K2(s)KIG(s) are considerably

more complex than the previbus plots. The plot for

row 2 shows that the row is dominant at all fre-

quencies since the origin is included by all solid

circles and excluded by all dashed circles. The

CARDIAD plot for row 1 shows that the row is clearly

not dominant at all frequencies. Dominance is lost

.12J

.07J

ol

-.07J

-.12j

-.12 -.0_ 0 .o7 .12

Fig. 4 CA_IAD Plot Row 1

Compensated

16j

9.6j

oj

-9.6j

-16J

"'-:;:..._\, ",,

/ii i ....
L !

-16 -9.6 O 9_6 16

Fig. 5 CARDIAD Plot Row 2

Compensated

at w-10, is regained as w=90, and is lost again at

w-700. It is perhaps possible to find a better

choice of K2(s) that will make row 1 dominant at

all frequencies, but the dominance achieved by the

above K2(s) proved to be sufficient.

An interesting feature of the CARDIAD plot is

illustrated in the final plot for row 2. Close

analysis of this plot shows that there are three

occurrences of solid circles changing to dashed

circles or dashed circles changing to solid. When

these transitions occur, the parabolold is invert-

ing and the circle of intersection degenerates to
a llne. These lines occur when the other row

changes from being dominant to not dominant or vlce

versa. Thus, each change in dominance of row 1

causes a change in the type of circle being drawn

in the plot of row 2.
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4. Design Ush_ K Characteristic Loci

Another approach to design, due to A.G.J.MacFarlnne,

uses the locus of the efgenvalues of G(s)K(_;), call-

ed the characteristic loci (C.L.), for values of s

on the SNC. This method is based on the relation

of the determinant of the return difference to

eigenvalues of C(s)K(s). In order to assess sta-

bility from the C.L. plots, for s=Jw, w positive,

one must count the clockwise encirclements of the

critical point (-i,0) made by the C.L. plots and

sum all these up. The closed loop system is stable

if this sum equals -po, where po is the number of

zeros of OLCP enclosed by the SNC. As an approxl-

mate measure of interaction, we compare the eigen-

value plots with plots of the diagonal elements of

Q(s)=G(s)K(s). For a nonlnteraetlng system with

Q(s) a diagonal matrix, these would be identical.

In our design example, Q(s) is a 2x2 matrix, and

therefore we will be looking at plots of two elgen-

values it(s) , _9(s) and the two diagonal elements

qll (s), q22 (s). *

First, an examination of the C.L. plots of the un-

compensated system revealed that, without compen-

sation, the closed loop system is unstable. The

plots are not included due to lack of space, but

conclusions drawn from them are given. Control pro-

blems for the uncompensated model were complicated

by the existence of considerable interaction, and

large gains at high frequencies. An additional

difficulty was that one of the eigenvalues was nega-

tive at zero frequency. This tended to limit the

response speed of the closed loop system. It ap-

peared on the C.L. plots that, from a stability

viewpoint, the frequency range of interest is in the

vicinity of I0 rps. This gives Justification for

use of the compensator given in the previous section.

As a practical matter, our goal is to achieve as

rapid a response as possible to a step input, with-

out suffering any overshoot. Heavy emphasis is

placed also on steady state accuracy.

To remove the right half plane pole in K_, we choose

K 3 arbitrarily as dlag (I/s,(-l+l.2359s)Ts). The

resulting K(s)=KI*K2*K 3 becomes

lK(s) - 9.4798+0.2494sj (9)

S

The diagonal nature of K3(s) does not affect domi-
nance. Moreover, an examlnatlon of the (I,I) and

(1,2) elements of G(s) reveals that if the 0 in K(s)

is changed to 9, we can significantly reduce the

-6000 -4000 -2000

qll -j2E4

i -j4E_
-J6E4

Fig. 6 First C.L. plot for Fig. 7

CKIK2K 3- .

200 600

j375 ]

j25o v-1 _i

J125 q22 J%%W_

72°
Second C.L. plot

for GKIK2K 3.

high frequency magnitude of qll(S) while simultane-
ously boosting the low frequency magnitude. This

is in accordance with the freedom specified for K2
previously. The modified K(s) gives rise to the

plots of Fig. 6 and 7.

Since dominance is not affected by diagonal compen-

sators, the problem becomes that of independently

shaping 11 and q77 by means of single loop tech-
niques, q16 order-_o reduce high frequency gain in

q22 without appreciably affecting low frequency be-

havior, we use lag compensation. A little bit of

cut and try led finally to K6(s)=dlag.(0.44E-4 ,

(-s-O.l)/(2000s+10)). The plots corresponding to

K=KI*K2*K-*K_ are not shown. The A and q.. plot

is essent_al_y that of A I in Fig. 61scaledi_y a

factor of 0.44E-4. Similarly, the q22 plot in-

verted and scaled by 0.0005. (By inversion we

mean reflection through both axes.) The plot for

12 is shown in Fig. 8.

5. The Direct Method of Analysis

Direct methods of multlvarlable Nyqulst analysis

concern themselves with the algebraic relation-

ship between the elements of return difference and

its determinant. For an NxN return difference,

the most basic _f these relationships is

det(I+GK) = I+ _ (_ ixi principal minors of GK}.

_'=1 (10)

For the example of this paper, (10) takes the form

I+{(GIIKII+GI2K21)+(G21KI2+G22K22 )} + det(CK). (ii)

In (i0) and (ii) we note the advantage of minute

detail and the disadvantage of nonrecnrsive con-

struction. Considerable interest attaches to the

removal of this disadvantage, which can be aecom-

pllshed by methods drawn from the results of exte-

rior algebra [5]. Consider the recurslon (where

tr denotes trace)

a 0 " I (12a)
r-1

1 }T a tr(GK) r-par " - r (12b)
p-O p

for l<r<N. It can be shown that

-.3 -,15

I i

/_'--"_r- I0 0

w=l

--.lJ

"-. 2J

Fig. 8 Second C.L. plot for

CKIK2K3K 4 •
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det(l+GK) © _ (-l)ia i. (13)
i-0

The direct approaches differ appreciably from meth-

ods described in preceding sections, in that they

address themselves directly to the image of

rdet(14GK) on the SNC, without any particular con-

cern for such issues as dominance or interaction.

Alternate insights accrue from such plots, which

we illustrate here for the engine design example.

All plots are dra_m for the final return differ-

ence as developed in the sections preceding.

Fig. 9 indicates the five constituents of a

det(l+GK) plot as developed in (ii), while Fig. I0

presents the corresponding two constituents accord-

ing to (13). Fig. Ii contains the total Nyquist

plot, which is obtained by adding the individual

curves in either of the two prior figures. Re-

vealed in this plot, Fig. Ii is a feature not so

readily noticeable in the earlier plots, namely con-

ditional stability. It appears, therefore, that the

availability of a variety of graphical tools is in

the multlvarlable case every bit as valuable as in

the more classical, one-lnput, one-output situation.

It is readily seen in Fig. ii that the plot encir-

cles -l+J0 twice in a counterclockwise direction.

Therefore, the system is shown to be stable because

the open loop characteristic polynomial has a double

zero at the origin.

Further exploratory studies of direct methods as

design aids are available elsewhere [6].

6. Simulation Results

Closed-loop time responses were obtained both by

using the linear model simulation and by implement-

ing the compensator on DYNGEN, a Jet engine simula-

tion program developed by the NASA Lewis Research

Center [7].

DYNGEN is a versatile digital program which ana-

lyzes steady-state and transient performance of

turbojet and turbofan engines. It uses a sixteenth

order system to model this example, and solves

the state differential equations by a modified Euler

method. The user need only supply appropriate com-

ponent performance maps and design-point informa-

tion, and then write the control subroutines. Im-

plementation of the compensator required first order

functions to perform integration and lead-lag com-

pensation.

The linear model used in this study was also obtain-

ed from DYNGEN. By utilizing a special control sub-

routine written by NASA, called DYGABCD [8], models

can be derived using whatever states the user de-

sires. DYNGEN thus possesses the capability to de-

termine linear models for the engine with any order

up to sixteen.

Fig. 12 shows the response of the linear model to a

step input in the first channel. Thrust has s rise

time (i0%-90%) of 1.04 seconds with no overshoot

occurring. High pressure turbine inlet temperature

increases to a _xlmum of 0.105 at approximately

0.9 seconds, then gradually decreases.

Similar, and even better, results occur when the

compensator is employed in the DYNGEN simulation

using a one percent step. Thrust rise time is 0.88

Fig. 9 The Nyqulst Plot of

the Elements of Det(I+GK),

According to Expansion Eq.

<ll).

Fig. I0 The Nyquist

Plot of the Elements

of Det(I+GK) Accord-

ing to Expansion, Eq.

(13).

- _"-=5. i0. " a

, -I0. -i. -5J t
! #
t

i -lOj •
, $

Fig. II Nyqulst Plot of Det(I+GK).

seconds, and the turbine temperature reaches a

maximum increase of 0.097.

The linear and nonlinear responses were not in such

close agreement for a step input in the second

channel. The linear model shows turbine tempera-

ture slowly ramping up (Fig. 13) as the change in

thrust is held to a minimum. DYNGEN produces simi-

lar results for the turbine temperature response;

however thrust experiences a strong decrease before

rising to zero. At this writing, it is believed

that the five states chosen for the DYGABCD model

do not adequately describe local engine behavior

for the second channel equipped with the present

controller.
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Fig. 12 Response to Step in First Channel
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Fig. 13 Response to Step in Second Channel

7. Conclusions

This paper has demonstrated the usefulness of the

new CARDIAD plot approach to designing compensators

for complex plants. The DYNGEN simulatlon for a

step in channel 1 has shown that acceptable re-

sponses can be obtained using linear compensators.

An ordered collection of these may make global con-

trol feasible. For steps in channel 2, conclusive

evidence was not obtained. We suspect that this is

due to inadequacy of the linear model in describing

the plant. This important factor of selecting an

appropriate llnesr model is often overlooked. But,

as we have seen, it turns out to be crucial in

practical applications.

The method of CARDIAD plots can be generalized to

plants with more than two inputs and outputs by con-

sidering a family of compensators with l's on the

dlagonal and only one non-zero off-dlagonal term.

As stated in Ill, except for changes in the order-

Ing of inputs or outputs, such a study is exhaus-

t lye •
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APPLICATION OF POLYNOMIAL TECHNIQUES TO

MULTIVARIABLE CONTROL OF JET ENGINES*

R. R. Gejji and M. K. Sain
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SL_tARY

This paper describes a complete case study of the application of the theory of minimal de-

sign to multivariable control of Jet engines, The minimal.design problem is approached fro= the

viewpoint of polynomial modules, and computational experience with PL/I and PORHAC-PL/I software

Is discussed. The complete minimal design solution exhibits flexlblllttes not apparent in early
industry studies, and a new apzroach to vole assl_nment can be u_ed _o advantage in this situation.

I. INTRODUCTION

One way to approach the design of linear multivarl-

able control systems is to express system specifications

In terms of a desired closed loop transfer function ma-

trix, A question which is often raised about such an

approach is the practicality of making such a specifica-

tion. Another, related, question concerns the possibili-

ty of determining the existence of realizable compensa-

tors to achieve the specification. When such compensa-

tors do exist, there are the very practical issues of

giving a finite enumeration of them, of determining

whether they have fixed poles, and of assigning one or

c0re of the non-fixed poles. Of special interest, as It

turns out, for the issue of pole assignment is the idea

of =intmality, in the state-space sense, of a proposed

solution in the context of all possible solutions.

This paper provides a thorough case study of such a

design approach when applied to realistic numerical mod-

els associated with an F-lO0-1ike turbofan engine.

Specifications are accomplished by means of the methods

of linear optimal control theory, according to proce-

dures already worked out in the Jet engine industry.

_e remalnlng tasks are addressed by regarding the design

as a problem in free polynomial modules. A special fea-

ture of the application lies in Its attention to compen-

sators of simple structure, with a view to the use of a

graded collection of them for the purpose of global

engine control.

Section 2 describes the basic design problem, once

specifications are made, Section 3 provides the dis-

tusslon of the Jet engine application, with particular

attention paid to the manner of making the specifications

and to the formulation of the main design problem for

the Jet engine application. Section 4 explains how to

cast the design problem in terms of free polynomial mod-

ules, and Section 5 describes floating point computation-

al experience gained In applying extended precision PL/I

software to solve the Jet engine proble= in the free mod-

ule context. Section 6 outlines the corresponding

experience associated with an exact rational calculation

made with FO_V, AC-PL/I software.

The results of Section 6 show that considerably

greater compensator design freedom is available than had

been apparent from early industry studles, Using these

results, a new pule placement design procedure based on

alternating multilinear algebra achieves in Section I a

slnlmal pole placement solution not possible by those

earlier Industry methods.

Section 8 closes wlth remarks designed to place the

work in historical perspective, to reference the litera-

tures snd to assess the merits of polynomial methods for

control system design In tne near term.

2. THE MINIMAL DESICN PROBLEM

Suppose that F Is a given field. For the Jet

engine control problem, F is taken to be R, the field

of real numbers; however, a great deal of the algo-

rithmic nature of the discussion is more general than

that, and is so stated. The set of polynomials which

are of interest is F[s], namely those polynomials in

the variable s with coefficients in the field F. The

fact that F{s] Is a principal ideal domain ring is well

known, as is the equally pertinent fact that F[sJ has a

quotient field F(s). More intuitively. F(s) is often

described as the field of rational functions in s hav-

ing coefficients in F.

The design problems of interest in the sequel are

conventionally stated in terms of F(s); however,

Section 4 explains how such problems may be re-converted

back to a corresponding F[s] form.

Principal interest centers upon the minimal dest6n

problem (HDP), which can be described as follows.

Let G: V._V^ be a linear operator for flnite-dlmensional

F(s)-vec_or_spaces V l and V 2. G is regarded as

reallz.._.abl..._eeif its _aErlx is proper. Now let GI: V_*V-

and G2: VI+V 3 be given linear operators, where V. _s J

also a flnlte-dlmensional F(s)-vector space. MD_ con-

sists in determining whether there are realizable linear

operators G which make the diagram in fig. i co_ute

and, if so, to find one whose minimal realization Is of

least dimension among all such realizable operators.

Intuitively,

V 1

G

=- V 2

v 3

Fig. I. MInlmal Design Problem

the operators G! and G Z derive from the given plant and
from the speciflcattonss while G represents the com-

pensators to be designed.

Beyond the baslc HDP. several additional issues are

of practical Importance. Among these should be._ncluded

• This work was supported In part by the National Science Foundation under Grants GK-37285 and

EHG 75-22322 and in part by the National Aeronautics and Space Administration under Grant NSG 30&8.
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(1) a finite cnumurotl_n of _ll posslb]c _olL_tJon_, (If)

d_z¢.rm[natlon of any fixed poles _n the matrix of C, and

(lit) methods for assigning the poles of C which are not

fixed. The answers to these questions resolve such

issues as the availability o£ solutions with varying

de_rees of integration. From a conceptual viewpoint,

these ideas are developed further in Sections 6 and 7,

whereas the computational issues are discussed in

Sections 5 and 6.

Next in order of presentation, however, is the

statement of a minimal design problem for Jet engine

control.

3. JET ENGINE APPLICATION

In this section, we demonstrate the practicality of

the minimal design approach in the context of jet engine

control. The basic plant is a version of the F-100

turbofan engine. Inputs are Jet exhaust area and maln

burner fuel flow; stateq are fan inlet temperature, maln

burner pressure, fan speed, high compressor speed, and

afterburner pressure; and outputs are thrust ena high-

turbine inlet temperature. The llnearized model approxi-

mates the small signal behavior of these engine variables

in a neighborhood of 67" Power Lever Angle (PLA). This

R. R. Cejji and H. F. !;;tin

I"i 7 ,_
a = _- (_y Q y + 6uTR6u + 6_Tsc_.)dt (3}

0

where superscript T denotes matrix transposition. The

weighting matrices Q,R, and g are listed in table 2.

Table 2

Weighting Matrices

with Optimal Integral Control Solution

Hatrix// Matrix Elements

Q 50,000 0
O lOt 000

550 0
R

O 175

0 0
S

0 20tO00

0.509 0.268 1.979 2.171 2.098
L

-2.137 -0.377 - 0.223 - 0.776 - 0.227

8.329 - 1.126

H I -2.811 - 1.842
i

At this points a minimal design problem can be

brought into play. The control scheme of fig. 3 is

seen to be more desirable because it incorporates ou_-
corresponds to a point approximately midway between

engine Idle and maximum nonafterburnlng power. The plant put feedback and enjoys the concomitant advantage of

is specified by the four matrices Ap,Bp,Cp,Dp in (I) and zero steady state error, even in the presence of plant
(2). parameter variation.

6_- A 6x + B _u (I)
P P

6y - C 6X + D _u (2)
P P

Table I lists these matrices for our example. The

attempt to design simple compensators for linear control

over a specified region is part of a strategy for global

control of the engine using a graded collection of these.

Table 1

State Description Matrices for Jet Engine (PLA=47 °)

Matrix Matrix Elements

-57.096 3.613 -10.211 - 5.481 - 2.715

19.832 -72.34 30.295 60.972 15.327

A 0.66 4.496 - 3.601 - 0.011 - 2.808

P 1.326 2.313 - 0.809 - 3.032 - 0.821

0.882 0.703 2.922 1.671 - 4.596

1.017 39.792

- 0.125 4.181

B - 0.077 - 0.382
P

- 0.088 - 0.565

- 3.563 - 0.785

- 0.037 0.031 - 0.016 - 0.042 1.368
C

_ p_ 1.081 0.149 - 0.057 0.001 - 0.086

0.546 0.018
D
p - 0.013 - 0.086

We next examlne how engine control specifications

can be obtained from linear optimal control theory. In

fig. 2, the compensators.

 _.FAp. 8p,

Fig. 2. Linear Optimal Control

specified by gain matrices G I and G? are chosen with the

objective of minimizing the _erform_nce index of (3).

<
_ du I Plant

L___.J L._ cp, Dp)

_V

Fig. 3. Optimal Integral Control

One relates the performance of the two control schemes

by equatln$, in both, the Laplace transform of the

variable 6u, as written in terms of the respective state

variables. This leads to the following equations, whicL

may be solved for L and H, ¢he values of which have bee=

listed in table 2.

H - -H (_)

[L:H]FA : B ]

That this is nothing but a gorm ot the minimal

design problem can be seen by evaluating the 2x2 closed I

loop transfer function matrices T(a) and T'(s) for the I
two systems in figs. 2 and 3. In fig. 2,

Pz(s) [sI - e2(s)] -1 H (6)
T(s)

where (7) J
- Cp(Sl-Ap) -1 + DPl(S) Bp P

" + G 2. (8)P2(s) Gl (aI-Ap)-i Bp
[

In flg. 3, on the other hands /

T'(e) - -Pl(S) [sI-P3(s)]-I H (9)
where

P3(s) - aPl(S) + sL(sI-Ap) -I Bp. (I01 I
Now, rewrite (6) uelng (4) aS

T(s) - -PI(S) [sI-P2(s)] "l H. (i11

The relationship between (9) and (11) now depends upon 1

that between (8) and {IO). I
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?,.)tiv.*riahle rnntr,_l of jet en_'ines

Co=i,arison of P3(s) and P_(_;). with the aid of (5)
*r.J (;), e_tablishes the equallty of the t_o transfer

(_>,tlons 7(s) and l'(s).

kk, can then pose questions regardinl_ the existence

of compensators other than H and L to achieve the same

#erformance as attained in fig. 3, and what, if any,

i_vantages such compensators would have over that scheme.

To do this, ve consider fig. 4. which tsa more general

scheme of control based on fig. 3.

:.23

We rer_ark here on a special feature t,f (20), ia

that it implies a co,_._on set of dynamics for both ¢om-

pensatnrs. Suppnse that .1 suitable solution of (22)

Fig. &. Generalized Compensation Scheme

_r objective _s to design compensators g(s) and X(s} to

t:hieve exactly the transfer function T(s) = T'(s)

between 6z and _y. This means that we must have

(l + P4(s)) -I P4(s) - T(s) (12)

where we have introduced

-i
P4(s) = Pl(s) (I+K(s)P5(s)) a(s) (13)

and

Ps(s) = (sl-Ap) -I Bp. (l&)

Fr0= (12), we obtain the equivalent condition

P4(s) = (l+PA(s)) T(s), (15)

_Mch can be restated in the manner

PI(I+KP5)-IG = (I+PI(I+ILPb)-IG)T. (16)

leads us to matrices Ag, Bg, Cg, D R and Ak, Bk, Ck, ar,'

Dk such that

G(s) o Cg(sl-Ag)'lBg + Dg (23)

K(s) - Ck(SI-Ak)'lBk + D k. (24)

In a typical situation, D - O; end it can be shown that
g

A - Ak; C = C k.
g g

Fig. 5 then shows how such a control scheme can be rea-

llzed.

JIVTN%'
. Cp, Dp)

Fig. 5. Realization of Compensation Scheme

Finally, we make the observation that (22) can be

completely solved, and a minimal solution computed by

algorlthzs given in the Appendix. The next section

deals with the theoretical foundation of these algori-

thms; and subsequent sections describe their application

to (22).

&. FREE MODULAR APPROACH TO _DP

In matrlx form. the minimal design problem of flg. 1

reduces to solving an equation

Fr0= table I, D is clearly invertible; and so the linear Gl(S)g(s) = C2(s) 425)

dyna_ical svste_ P1 has a unique linear dynamlcal inverse

system p.-l_ which we designate _i" Thus (16) is for the various realizable G(s), where Gl(s) and G2(s)are given. Section 3 provided a nontrlvlal illustration

equlvale_t to of (25) in (19), where

G(I-?) - K P}PI T - PIT (17)

which in turn can be written

T'T T T T'T

[(I-TT) i -Z P1Ph][ G[KsjI" T PI" (18)

Some si=plification can be achieved st this _oint if we

take advantage of the fact that the matrix T_(s) has an

inverse _T(S). Then (18) can be cleared in its right

=e=ber so that

.%w co=pare (19) with fig. l, from which it becomes clear

that G. is the identity map, or that our control system

=tnima_ design problem turns out to be • version of the

minimal inverse system problem. Writing

[GT(s) 1 - N(s)D'ICs). 120)

(')(+T(')-=).:- (21)

C2(s) = I, (27)

and where the field F was R, the real numbers.

The free modular approach to _P is based upon the

recognition that, as a set,

F(s)= F(=] x FIe).

which, in turn, suggests that it may be possible to ex-

press (25) in terms of F[s]. A convenient way to bring

this about, as illustrated in (20), is to write

G(s) = N(s) O'l(s), (28)

where N(s) and D(s) have their elements in F[s]. It is

easy to see that every G(s) has representation in the

form (28). Similar representations could be adopted for

(s), i = _,2, but the presentation can be simplified
_ the choice

H i (e)

Gi(s) - _ i - I, 2 (29)%,=,
where N(s), V(s), and H(s) are matrices over R[sl, and is made, with d_(s) c Fie], i - 1,2 and H.(s) having ele-

_here d(s) c R[s], we can put 421) in the polynomial form ments in F[s], i = 1,2. Equation 425) isXthen clearly

['I(s)
r1|N(s)[ . 0 (22)

Equation (22) is a polynomial "kernel" problem,

equivalent to the design problem of fig. 4. By compar-

ing figs. 3 and 4, we can trivially establish that a sol-

ution to the problem does Indeed exist. Our goal in the

sequel is to give a finite enumeration of all possible

solutions and to study their pole ns._tgnment posslbl|l-

ties relative to the structure of fig. 4.

the same as

Ml(s) M2(s)

dl(S----_N(s)D-l(s) - d2(s ), (30)

which, in turn, is equivalent to

ld2(s)Ml(,) : -dl(s)M2(s)] IN(s)]
• t_(d)_ " o. (31)

an equation written over F[s]. For the Jet t, ngine
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problem, (22) corrcsi,ond_; to (3t). Let

ISl(s/J
denote the ith column of

•
Then

ti(s) = O, (33)[d2(S)MltS) i
and every candidate to construct a solution (28) can be

traced to such ti(s).

Thus M/DP is quite closely related to the homogeneous

equation

[d2(slHl(s): -dl(S)Hz(s)] t(s) " O. (341

The purpose of this section is to explain briefly an

appropriate algebraic interpretation of (34). This in-

terpretation is based upon generalizing the notion of the

n-dlmenslonal F(s)-veetor space F(s) n to that of a

rank-n F[s]-module F[s] s. As a vector space, F(s) n

satisfies the usual axioms, with scalars taken from the

field F(s). As a module, F[s] n satisfies exactly the

same set of axioms, but with scalars taken fro_ the

principal ideal domaln rink F[s]. Despite this close

similarity, E[s]-modules do not behave in exactly the

same way as vector spaces, But there is a class of them,

kno_ as flnlte-rank free modules, which have a great

similarity to flnlte-dimensional vector spaces In that

they have a basis, which can be defined in the usual way

using concepts of span and independence. F[s] n, for

example, is said to be free on the basls

{(0 ..... O, 1, O, .... 0); i - 1,2,...,n}. (35)

/
lth position

Morphlsms of F[s]-modules are defined analogously to

linear operators on vector spaces; and, when domain and

codomaln are flnlte-rank free modules, the basis concept

is used in the usual way to define a matrix for the

morphlsm. This, then, is the Interpretation to be given

to the p x q matrix

[d2(S)Hl(S)i -dl(s)M2(s) ] (36)

in (34), namely the interpretation of a morphlsm

g|: F[s] q _ F[s] p (37)

of finlte-rank free F[s]-modules. As a submodule of the

flnlte-rank free module F[s] q over the principal Ideal

domain F[s], the kernel of M is also free, and thus the

solution to (34) is tantamount to finding a basis for

this kernel. The process for calculating such a basis

Is provided by Algorithm I in the Appendix.

If a basis

tl(s), t2(s ) .... , ta(s) (38)

for Ker M has been computed, MDP solution then depends

upon a determination of whether these basis elements can

be used, through (32) and (28), to construct realizable

G(s) matrlces---and, if they can, to find G(s) whose

minimal realizations are smallest and to assign poles

wherever possible. It turns out to be convenient to

answer these questions in terms of a reduced basis, whose

definition Is as follows. Leg
k

tics) . [i tl,jsJ

J=O

where tI, j c F q. ti.ki + O, and i = 1,2,...,a.

basls (38) is said to be reduced if the matrix

Ih,hi t2,k2! .. • t_,kl

has rank a.

(39)

Then the

(40)

Algorithm 2 in the Appendix reduces a basis.

,-;ith [he_,e n_,tlons, the Mt)P Algorit}','_ in the

,',p;,u:_',ix _,olve!_ ._DP. The issue of pole assi;'._:',e=." ;s
(32) to'sen up in St ction 7.

5. FLOATING POINT EXPERINECE

In view of the material presented In the prevlous

secticn, we are ready to take a closer look at (22).

The matrix [_:(s): -d(s)I] turns out to be a 2 x 9 r.a:r:,

of polynomials i_ R[s]. Lack of space prevents _s frca

reproducing all the numbers here, but fig. 6 sho_.'s tha:

the typical element is a thirteenth degree polync=lal.

k'e also note the large variation in the _,agnitudes o._

the coefficients of the polynomials.

.......
1"--- 3 2

1.17 EIO s -1.37 ElO s

+4.40 EIO s 4 _.99 EIO s 3

+4.06 EIO s 5 -4.21 EIO s 4

+1.18 EIO s 6 -1.O7 EIO s 5

-!.24 E9 s 7 +1.49 E9 s 6

-1.26 E9 s 8 +1.99 E9 s 7

-2.O7 E8 s 9 +1.99 ES s S

i0 9
-5.55 E6 s +6.93 E6 s

Ii I0
-4.80 E4 s +8.33 E4 s

12 ii
-7.09 El s +2.38 E2 s

+4.5 F-I s 13 -I.00 EO s 12

Fig. 6. Polynomial Matrix

In this section, we report on FORTRAN and PL/I

softwares developed to implement the MDP Algorithm on a

digital computer, and our experience in the application

of the software to the jet engine control problem de-

scribed earlier in the paper. Both the programs use

floating point arithmetic to implement the Y_P A1gorlt_=.

considered over the field of real numbers. The FORIP_s

version, using double precision arith_etlc, affords 15

digits of precision (decimal) on an IBM 370/158 co=-

purer. The PL/I version, using extended precision

arithmetic, carries 33 significant digits. Our Jet

engine minimal design problem comes down to the question

of determining the rank-seven kernel of a module morphlsz

whose domain has rank nine, and whose matrix representa-

tlon in the usual basis contains thirteenth degree poly-

nomials. In our experience, the principal difficulties

arise from roundoff error occurring as a result of flnlte

representation of real numbers in the computer.

There are two noteworthy features of the floating

point KERPO (KERnel of a Polynomlal Operator) software.

First, it provides the user some control over the number

of digits considered significant during internal computer

arithmetic. In actual problems, this appeared as the

critical factor in obtaining acceptable solutions from

the computer. Second, it performs a verification of the

computed results up to four significant digits. Any

discrepancy so pointed up, one attempts to rectify

by varying the number of digits considered significant.

In the case of the Jet engine problem, after making

several runs, we obtained an (apparently) acceptable

solution from the PL/I vezsion by setting the threshold

for loss of significance near eleven digits. We can

compare this solution with the known solution to the

problem, represented by fig. 3. To do this, we proceed

as follows.

The complete solution to the kernel problem appearl

in the form of seven elements In a rank nine module,

which are the required reduced basis for the kernel.

Represented in the usual manner, five of these contained

polynomials of degree k_ one or lass. It is interesting

to note that the existence of such elements can be pre-

dicted by the following argument. We interpret fig. 3

52



tl. lliv,lri.C_ll' ,'_l_tr,_l .f iL, t vn;_l_

tO )_eld _ _olutlon to the kernel problem, of [he form

{_i).

LsiJ

tSe assumption that all solutions can be generated

Ire= the kernel basis, the logical conclusion is that

the two eoiumns of (41) can be represented as a linear

c0=blnatlon of the five first degree elements In the re-

t_ted kernel basis. Interestingly enough, the question

0_deter_lning this transformation can itself be repre-

mented as another kernel problem in polynomial modules.

E0wever, attempts to generate such a transformation

turned out tO be unsatisfactory.

As an alternative approach to verifying the EERPO

solution, _e used two of the five first degree basis

ele=ents to realize a second order dynamical control

scheme for the Jet engine, along the lines of fig. _.

free fig. 5, we could then obtain a state description

lot the overall closed loop system, which we then com-

pared with the corresponding optimal integral control

scheme system of fig. 3. This comparison was based on

the first few M_rkov parameters. Table 3 shows this com-

parlson for two of these parameters.

Table 3

Comparison of KERPO Results with

Optimal Integral Control

_rkov KERPO Solution [ Optimal Integral

Para=eter [ Control

-4.4968 0.64515 -_.4969 0.64814

CB -0.]334g -0.17304 -0.13348 -0.17305

2631.6 1348 70.451 3,544

CAB 20693 10890 129.15 95.573

Ve note that our solutlon appears to have identlfied the

3 and C matrices correctly, while it is in error SO far

as the A matrix is concerned. On the basis of this

evidence, we conjecture that roundoff error incurred in

i=plementing the Euclidean division algorithm has the

=0st serious impact on the correctness of the solution.

This is because, intuitively, the effect of the A matrix

in the state space corresponds to multiplication by 's'

in the module. Since, in our case, the factors by which

the matrix columns are multiplied are computed via the

division algorithm, we hypothesize this to be the source

of the error.

In order to solve the _et engine minimal design

problem, then, one has the option of developing floating-

point software which has increased sophistication or of

switching to softwares which permit exact rational cal-

culations. The next section reports on the latter method.

6. EXACT RATIONAL SOLUTION

One way to avoid the dlf£icultles of finite machine

representation of real numbers is to consider the numbers

of table i as being rational instead of real numbers.

It is then possible to get an exac____ttsolution to the Jet

engine problem, using softwares such as FOR_C or ALTRAN.

These have the capability of rational and symbolic manlp-

ulation with an essentially unlimited degree of precision.

Naturally, as the calculation proceeds, one would expect

the integer size to increase quite a bit. As a con-

sequence, the storage requirements ind computer time need- --

ed to manipulate these would also be substantial. In 1.

this section we give evidence as to the magnitude of 2.

these, especially to contrast wlth the requirements for 3.

the floating point calculations. This yields valuable

insight into the tradeoffs involved in terms of computer 6.

usage needed tO solve typical realtetic jet engine con- 5.

trol problems from the polynomial approach. The results 6.

reported here are based upon FOPJdAC software written to 7.

implement, in rational arithmetic, the procedure of the 8.

423

Appendix, on a,1 lltH 376/158 computer.

Startin_ with the numbers of table 1. together

wi_h the L and tl ma_rlces of table 2, we go thrc_ugh the

calculations outlined in Section 3, and arrive at an

exact ratlonal-coefficient version of the kernel prob-

lem of (22). By applying the HDP Algorithm, conceived

now over the field q of rational numbers, we are led

finally to an exact reduced basis for the correspond-

ing exact 2 x 9 matrix over Q[s]. The seven basis

elements turn out to contain polynomlals of degree k I
equal to one and no polynomials of higher degree. Note

that this means the floating point software missed at

least two elements of first degree in the reduced basis.

Rounded to fit in the available space, the seven basis

elements obtained from exact software are indicated in

table 4.

We would now like to compare the computer resources

needed for the floating point calculation with those

required for the exact calculation.

In the floating point software, a sort of trial

and error process was used to optimize the calculation

by varying the threshold for loss of significance.

Though this software did not reach a satisfactory an-

swer for the Jet engine problem, we have allotted from

our experience about seven runs of two CPU minutes each

to this calculation. Each run occupied 400K bytes of

memory.

Next consider the exact calculation. This soft-

ware occupied 300K bytes of memory and executed the

Jet engine calculation in 135 minutes CPU time. How-

ever, the great majority of this time turns out to be

consumed in Algorithm 2. which computes a reduced

basis. This suggests strongly that more research on

the reduction process---a common one in the literature

---could have a considerably greater than average effect

on practical applications of the method. Except for

the reduction, the remaining part of the calculation Is

just about an order of magnitude away from being very

reasonable; and improvements of that order can be ex-

pected to occur in the near term, either through hard-

ware or software advances.

A comparison is made in table 5. Here it is seen

Table 5

Comparison of Floating Point and Exact Solutions

r Floating Point Exact

"_=_'_/ Algorlthms' 1' and 21 Algorithm 1Algorith_ 2

Memory 400g bytes 3OOg bytes 300g bytes

CPU 14 minutes(average) 18 minutes 117 minutes

that, on the average, the difference between floating

point and exact softwares was about an order of magni-

tude in computing t_me.

For the exact solution, it is of interest also to

examine integer sizes at various stages in the calcula-

tion. Such a sur_hary has been made in table 6. Note

Table 6

Integer Size During Exact Solution

Stage of Computation _No, of Decimal Digits

_in Typical Integer,

State Matrices For Plant

Plant Transfer Function

Ioverse of Closed Loop System

(Z)
Kernel Problem (2 x 9 matrix)

After Algorithm 1

20% through Algorithm 2

60% through Algorithm 2

Flnal Reduced Basis

4

14

33

65

150

270

250

160
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Table 4

(Rounded) Reduced Basis [rom rxact Solution

2.443E-3 0.0 0.0 0.0 0.0 0.0 0.0

1.601E-3 0.0 0.0 0.0 0,0 0.0 6.565E-4

-3. 824E-2 -7. ]ggE-5 4.49&E-4 4. 146E-4 4. 146E-4 4.146E-4 0.0

I. 125E-3s -6. 649E-6s I. 2SSE-Ss I. IS8E-Ss 5.151E-6s 5. 834E-6s 5.S06E-ds

-7.898E-3 -6.41 E-4 O.0 O.0 0.0 O.O 0.0

1.87 E-4s -I.331E-Ss 3.653E-6s 3. 322E-6s -2.571E-6s -I. 768E-6s 8.467E-Ss

-i. 526E-3 9. 685E-5 2. 893E-6 0.0 O. 0 O.O 0.0

6.54 E-4s -6.621E-Ss -4. 642E-Ss -4.423E-Ss -2.416E-5s -I.B47E-Ss -I. 314E-4s

0.O 5.081E-4 4. 794E-4 4.479E-4 O.O 0.O 0.0

1.843E-ds 1.713E-ds -4.245E-Ss -3.O76E-$s 1.279E-Ss

0.O O.O 0.0 -2.217E-6 -3.491E-5 0.O O.0

+3.131E-6s 7.438E-6s -l.421E-ds

0.0 0.0 0.0 0.0 0.O 1.622E-5 0.O

g.972E-Ss

2. 935E-2 2. 949E-4 -4.416E-4 -4. 068E-4 -2.25 E-4 -2. 434E-4 0.O

8.69 E-4s 2.955E-ds

that integer size before and after Algorithm 2 is about

the same, _'hile it nearly doubles during Algorithm 2.

This also suggests that improvements in the efficiency

of Algorithm 2 zay be possible.

Finally, we su._.,arize by cer=entlng that _he float-

ing point software used on the order of 4 x i0 byte

seconds of computing power, but eventually did not yield

an acceptable solution. On the other hand, the exast

rational software required on the order of 2.4 x lO-

byte seconds of computing resources and led to an exact

solution.

7. COMPENSATOR POLE ASSIGN_ENT

The exact rational software discussed in Section 6

obtained the reduced basis, ti(s), 1 < i < 7, with

['ti(s) l

ti(s). t_i(s)J (42)
of table 4. From (20), where GT(s) is 2 x 2 and KT(s)

is 5 x 2, we see that the matrlx N(s) must be 7 x 2 while

D(s) is 2 x 2. Accordingly,

[_(s)]

is a 9 x 2 matrix, which means from (32) that two kernel

elements

_ust be chosen to effect a design. These elements (43)

will be linear combinations of the reduced basis elements

(42), If

t_l(S) ! ;2(s)I
has a linear dynamical interpretation as described in

the Appendix, then N(s)D'l(s) has a minimal realization

whose state matrix has a characteristic polynomial

ID(s)l - I_l¢S) " _,,¢s)l. ¢44)
Now let 7

di (s) " _ fik dk(S)' fik c R, t - 1,2. (45)
k-l

Then 7 7

Iocs)l -I _ flkdkCS): _f _¢')1
k=l • j-1 23 .1

7 7

= k-1_' l[1flkf2j` I%(,):aj¢s)l,. (46)

by elementary properties of determinants. This shows

that the characteristic polynomial of the state matrix

54

in a minimal realization of N(s)D-l(s) can be vleved as

a linear combination Of the determinants [dk(s)_dj(s)I..

Table 4 makes it clear that IDI must have degree a:

least two; and so, since

idl_d61. = -l.4092974E-Bs -4.7599915E-7 (_Ta)

!dlld71 - -8.6656773E-Ss 2 -2.9268875E-6s (475)

[d6idTl = 2.go6oo23E-Bs, (_7c)

with the polynomials in (47) serving as a basis for

Rp[s]. the R-subspace of R[s] consisting of polynoz_als

of degree two or less, it is possible to construct an

arbitrary polynomial

ID(s)] = bls2 ÷ b2a + b3, (48)

for b. c R, i " i,2,3 by forming an appropriate linear
1 .

comblnat_on

+lleli%l + ++lelie+l + e3ld6id7[: ¢49) _

_. c R, i " 1,2,3. The B.'s are uniquely determined by

t_e bl's. To complete a _ln_m_l design (48), it is

only necessary to calculate f1_ and f.. for k and
J = 1,6,7. But certain resul[_ from _e exterior

algebra, referenced in Section B, permit the calcula-

tion o[ (fll' rE6' f17 ) and (f21' f26' f27 ) as the bash

of the kernel of the matrix [S3, -$2' 811" Space pre-
cludes a complete treatment of the theory, so we turn

to the Jet engine example.

We make the selection

[D(s)I= s2 + 2s + 2, (5o)

not so much because these dynamics are most desirable,

but rather because the industry methods described in

Section 3 could not be used to achieve (50) in a

minimal design. Thus, by solvlng this case, we estab-

lish potentlal superiority for NDP over existing in-

dustry techniques.

Starting then, with (50) and working backwards, we

can calculate BI, i = 1,2,3 and thence (fll' f16' f17 )

as well as (f21' f26' f27 )" These calculations were

performed using exact arithmetic again. The results are

presented here after rounding. First we obtain,

Ol - -4.202E6 (51a)

8 2 - -I.154E7 (Slb)

_3 " -I.095E9. (51e)
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}%]tivariaLlc LL'T_tr(,; ,)f jL'L _¢:_'iEXt_

Ir_t, the needed f .'s are _btai,ncd frorl the ba_ts for

lhe kernel of [_3,1J_2, f'l ] . A '.'_,rkable set of fiJ 's i:;,

fll " [:2/f_3 (52a)

f21 = - _ 1/_++3 (52b)

f16 " f27 = 0 (52c)

f26 = f17 _ 1 (52d)

T_e f 's were, in our application, further scaled by a
lacto_Jof 10 to obtain the compensator gains as reason-

8hie numbers. _his can be done without upsetting the

t0=pensator pole placement to be achleved. Eqs. (45)

J_d (_2) can then be solved for t I and t 2 of (43). The

9 a 2 matrix [tl!t2]. which represents our solution, is
leen tO be,

2.573 -0.937

1.687 65.039

1.769s +1.183 57.634s +14.665

0.0202s -8.32 8.395s +3.029

-i.158s -1.607 -13.396s +0.585

-3,076s 1.279s

0.744s -14.214s

1.622 9.972s

0.915s +6,582 29.213s -11.258.

(53)

A number of procedures exist which lead directly

fro= the matrix [t1!t 2] to a state-space realization for

the compensators G_s) and K(s). Referring then to fig.

5 and eqs. (23) and (24), we find the matrices A , Bg,
C , B. and D. for a final solution of the problem.

K .K
_ese are hsted in Table 7, after rounding.

Table 7

Compensator Realizations

Matrix Elements

" -2.0 -0.1626
A

g 12.298 0

2.5732 1.686

g -0.9369 65.039

-3.2 0.i

C

g 1.O92 O

-11.727 -9.725 2.688 5.944 0.824

Bk 36.416 3.28 -13.66 -37.83 9.147

0.119 0,777 2.363 9.973 -3.806

Dk
1.932 0.022 -1.265 -3.36 0.813

The solution given in table 7 was verified by com-

paring the corresponding Harkov parameters for the

dosed loop systems of figs. 5 and 3. An exact calcula-

tion comparing the first two Marker parameters, showed

these to be identical for both systems. Another, non-

exact calculation, which verified the f_rst six Marker

parameters, showed agreement to four dlglta. The first

two of these were listed in the second column of table 3.

Step responses obtained from the closed loop system

of fig. 5, using the numbers of table 7, are shown in

Hg. 7.

A visual comparison of fig. 7,with similar plots

obtained for _he optimal integral control system of

fig. 3 showed them to be identical. Hence the latter

set is not included here. It might be interesting to

examine the distribution of closed ioep poles, which is

given below.

-138.43 -4.47 + 0.986 i

- 78.38 -1.678 _ 0.238 i

-0.136.

_ilt I)Ut l

i _4] _'_ ._ t_l + Output 2
0.5 .5 1

(a) (h)

_27

Fig. 7 Unit Step Responses. (a) Step

on Input I (b) Step on Input 2.

As a final note in this section, it can be pointed

out that'the fixed poles in a compensator solution are

the zeros of the greatest co_on divisor of the poly-

nomials{Idildj[, i, j - 1,2 ..... 7}. It is clear from

the pairings (1,6)', (1,7), (6,7) of our example that

this tED is i, and thus that there are no fixed poles

in the Jet engine application.

8. REMARKS

8.1 Conclusions

Conslderable work has been done in the control

systems area on polynomial design methods. Regardless

of which viewpoint one takes toward the definiticn of

such problems, their solution is usually assumed to

proceed according to algorithms of the type described

in the Appendix. Conceptually, this theory has achieved

considerable maturity, and so it seems appropriate to

conduct an extensive case study of its application to a

realistic problem. This is the reason for the Jet

engine control analyses carried out in this paper.

The conclusions are generally positive in nature,

though with some temporary limitations. On the positive

side, Sections 3 and 7 show that v_p is a problem rele-

vant to the jet engine control industry and that the

P_P Algorithm offers a significant improvement in flex-

ibility of design over existing algorithms in that in-

dustry. The application problem detailed herein pro-

vides a realistic and nontrlvial test case for workers

in the area of computer solution of polynomial problems.

A flrst llmltation clearly occurs in Algorithm 2, which

is a popular and well known theoretical algorithm.

Both in terms of integer growth and relative CFU time,

this reduction algorithm points to a need for further

research. Following such an improvement, it would

appear that the second limitation is overall CPU time

for an exact solution. Though the cost of such time

would be a small part of overall design cost, it appears

desirable to reduce this time by an order of magnitude.

Since such a reduction seems to be a near-term posslbll-

try by hardware or software advances, it would seem that

polynomial methods may soon be ready to play a greater

role in everyday practical design.

8.2 Historical Remarks

The original stimulus for this work was the paper

of Wang and Davison [1] in 1973, in which a minimal

inverse system problem was solved. That work subse-

quently led to the algorithm of Forney [2] phrased in

rational vector spaces. Together, these works then led

tO the free-modular MDP Algorithm [3] which has been

applied here. The Jet engine application has been

motivated-by Michael and Farrar [4], whence arose our

numerical data. A report on KERPO in double-preclslon

FORTRAN has been presented [5], as has a more complete

treatment of the pole assignment approach [6] in Section

7. Background reading on the algebraic aspects of the

paper Is available in [71; and the exact proposition
needed in Section 7 can be found in Chapter XV, Section

8. Proposition 15 of [8]. Further references to related

_ 55



428

polynomial works have been cited in I]].
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APPEh'D IX

Let

_[ : FIs] q * F[s] p (A.I)

be a morphlsm of free modules. In the appendix, we

describe how a reduced basis for the kernel of _1 can be

obtained and used to solve }mp. For a more complete

discussion, the reader is referred to [3]. Solutions are

obtained in the form of the q x _ matrix

'N(s) ] (A.2)

over F[S].

We change notation slightly by letting H be the

h x q matrix representing the morphlsm _4. The technique

is to choose q x q unlmodular F[s]-matrlcss to post-

multiply M. A matrix is unlmodular if it has a non-

zero determinant that is an element of F. Mathemati-

cally,

U ". F[s] q -, F[s] q (A.3)

is unimodular if |UI @ O, c F. Such an operation is

equivalent to a change of basis in F[s] q and leads to a

representation of _{ in the new basis, The following

elementary column operations are examples of such trans-

formations. The column operations are, (i) interchang-

ing two columns of H; (2) adding an F[s]-multlple of

one column of M to another; (3) multiplication of a

column of M by a non-zero element of F.

R. C,. Cejji and H. K. 5,_in

(A.4) to the

l!'; elementary column operations, reduce
c ors

L ""

where Ell has p rows, has no zero columns and is in an
echelon form.

Ste___/. Then the columns of E. 1 are a basis for
the image of _(, and the columns o_ E22 are a basis fcr

the kernel of _ (Ker _().

Now, let b i, i " 1,2,...,a be the columns of E.,
obtained from Algorithm 1 as a basis for Ker N. Then"

by application of further unlmodular transformations,

we can get an equivalent basis for Ker _ which is re-

duced in the sense of Section 4. Notice that we have

introduced the notation b i for elements of the basis

before reduction, to avoid confusion with ti, i • 1,2,

...a, which was assumed to be a reduced basis in Sec-

tion 4. The algorithm below is used to reduce the ker-

nel basis. However, the procedure is more general in

nature and can be used to reduce a linearly independent

elements in F[_] q regardless of their origin. Thls one

is typical of procedures described in the literature

for doing these kinds of calculations. However, as has

been pointed out in the paper, it is this part of the

computation that consumes the major portion of co=purer

time. Any research aimed at achieving efficiency in the

reduction process is, therefore, the most likely to have

a significant payoff in ter_s of making the Y_P method

of control system design tractable in the near term.

Algorithm 2

Write each b i, i = 1,2,..., a in the manner

Zi

bi " j!O bi'Jsj (A._)

where bi, j c Fq and bl,_i # O. We shall say the list

b I, b 2, .... b r is reduced if the matrix

[bl,_l b2,L2 ... ba,_a] (A.T)

has rank a. Then, perform:

S_e!92__. If the llst b., b2,..., ba of linearly
independen_ elements is reduced, stop; otherwise, con-

tinue.

Ste____/. Determine flcld elements f. in F, I • I

_, which are not all zero and which satisfy

fl bi,_ i O. (^.g)I=I

Stein._/. For the set of integers i having fl

non-zero, determine an i, denoted by Imax, for which l!

is a maximum, denoted by Lma x.

Step 4. Perform the elementary column operation:

Replace b I by
max

(£max-£1)

[ fi his
i-I

Return to Step i.

The question that remains is how the reduced basis

Given the p x q matrix H, the following algorithm may be used to obtain linear dynamlcal solutions to N)P.

leads to a basis for Ker _4. The basis elements are re- Let MDP take the form (A.9) when stated over F[s].

presented In the usual manner.

,,[-:]Algorithm 1 - - O.

Ste!9__. To the p x (2 matrix H, adjoin a q x q

identity matrix to form Now, in any solution

(^.9)
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Mul[ivari;Jble col_[ro! of jut en_;inc's

0{ (A.9), each of thv £ _olumn_; will he contained in tile

kerr.c.l c,f '3. All solLJti_,ns p.]lrs (N,D) can, thtJs, be

fr.r t:vr ._l. l'nL](.r wh_t _nI_d(tions will a _o]ut|on pair

k'ithou_ loss of g_r, erality, _:e m.Jy assume that for

,_y cand_Jate pair (N,D) the'Z columns of

[-;-] =o.o.
mre reduced. 5ecaus_ t£ they are not, a uni=odular trana-

10raation g on F[s] _L. chosen accord ing to Algorithm 2.

rill produce an equivalent pair (N,D) such that the col-

,-'ns of

Jre reduced and

ND-I = _.V(DV)-I . _-I. (A.IO)

_en, we _ake the following co,-.._.ents, offered without

_roof.

(1) N(s)D'I(s) can be realized by a linear dynamical

syste: if ;;D-I is a matrix of proper rational func-

tions, In such a situation, there exists a reali-

zation A,B,C,E, all matrices over F, such that

C(s) _ N(s)D'I(s) (A.II)

- C(sI-A)-IB + E.

Eqvivalentl.v, _'e also say that a pair (N,D) has a

linear d,.'na_.ical _nterpretation if the _ columns of

[-:-i
m_ reduced and furthermore, letting the i th column be

E i " " -- m i - 1,2 ..... Z, (A.12)

'.here( colu:ns, _'hen expressed as

ml .

tl= J=_0 ti'jsj' ti'ml _ 0 (A.13)

m much that the last _ rows of the _atrlg

[tl,ml _"2,m2 ... _t,m ] (A.14)

Mve full rank.

_eing concerned with finding a realization wlth the

-_ml order of dynamics, we state two more properties.

_) If the property in (1) is satisfied, then th@ deter-

=Inant ]D(s)[ is related to the minimal realization,

being an F-multiple of the corresponding clmrac-

tetlstlc polynomial [sI*A)[. Also,

_) The colu=ns of

N-]
when expressed as in (A.13), yield the number of

dynamical elements in the minimal realization as

i-i

With these notions, let t_, i " 1.2..., ,_ be the
dxed basis obtained from Alg_rlthm 2. Then, HI)l ) re-

",m to generating _ elements In Ker _4 which have a

_._r dynamical interpretation, with minimum order dyna-

l_m. For this, we can use the _P Algorithm.

_klRorithm

%t___t_._..1.Apply Algorithm 1 to obtain a basle

429

h i, I • I " _ (A.15)

for Ker _4.

Stf_ 2. Apply Algorithm 2 co the el(,:cnts of (A.IS)
to form a reduct'd ba_is.

t i, i J i _ a. (A,16)

Express the reduced basis (A.16) in this

k l

tl - J_0- ki'jsJ" ti'kl ¢ 0 (A.17)

for i = 1,2. .... _. For= the _atrix

[tl,kl t2,k2 ... t ,k_ ]. (A.Ig)

If the rank of the matrix formed from the last _ rows

of (A.I8) is not equal to (, stop; Id_P has no solution;

otherwise, continue.

Step &. From the elements of (A.16) in the reduced

basis select _ elements

til' t12''''' tlz

with the properties

(i) the rank of the matrix formed frc_ the last

rows of

[til'kil ti2'ki2 "'" tiZ'ki_]

is equal to _; and

(il) j_0 kij is a minimum.

As a matter of fact, mgre solutions to M_P may be

possible. Any elements tl' t2 .... 't_ in Ker M,
which admit a linear dynamical interpretation and achleve

the minimum order dynamics predicted in (ii) above, are

a solution to HDP through the equations

-D- " [tl t2 "'" tz] (A.19)

and

O(s) = NCs)D'l(s). (A.20)

Now, in the Jet engine problem, _ is 7 and _ iS 2. The
two needed columns of

h?
were generated in Section 7 to satisfy the pole place-

ment requirement"
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Abstract

Present research efforts in the area of linear multivarlable control systems in-

clude activities which will probably reestablish frequency domain methods as fre-

quently used tools for design. Two notable branches of this activity are polyno-

mial methods and return-dlfference-determlnant methods. This paper sketches some

features of these approaches, in the context of a numerical example from turbofan

engine control.

I. INTRODUCTION

State variable methods for the design of linear

multlvariable control systems are well established

as a major tool in the applications. Variants of

the linear quadratic regulator theory are probably

_he most successful, with a variety of other tech-

niques such as pole placement, decoupling, and

geometric regulator theory also available. Even

today, however, linear quadratic regulator theory

still requires a somewhat indirect thought process,

a feature it shares with many optimization methods;

and much of the remaining technique is synthesis

oriented instead of design oriented.

A =

Accordingly, some modern re-emergence of frequency

domain thought has occurredN-especlally for design. B =

Broadly depicted, this work involves polynomial

methods and return-dlfference-determlnant methods.

This paper records certain studies of these ideas,

on a common illustration from turbofan engine con-

trol. Brevity precludes In-depth treatment; we re-

ly instead on the illustrations and the references,

2. ILLUSTRATIVE PROBLEM

The turbofan engine model chosen for the illustra-

tions has two control inputs--fuel flow and exhaust

area, five states--fan turbine inlet temperature,

main burner pressure, fan speed, high compressor

speed, and augmentor pressure, and two outputs--

thrust and high turbine inlet temperature. In

traditional (A,B,C,D) form. the state description

[I] is given by the matrices at the top of the

following column, at a power lever angle of 47".

For the sequel the corresponding matrix G(s), name-

ly C(sI-A)-IB+D, is recorded.

--4

E

-57.09_

19.832

,660

1.326

.882

39.792

4.181

- .382

.78_

3.613

-72.3 '_0

_.496

2.313

.703

I._17

- .125

- .077

- .088

- 3.563 :

•o3i -

.14_ .-

-10.211 - 5.481 - 2.715

30.295 _O.972 15.327

- 3.601 - .011 - 2.808

- .809 - 3.032 - .821

2.922 1.471 - h.596__

.086 .o13

.037 .016 - .042 _.368 I
C= I

Io081 .057 .001 - .086J

G(s), in a loop under unity negative feedback of the

plant outputs. Fast step responses with small over-

shoo_ are of interest.

The design problem is to select compensators for

68O

3. POLYNOMIAL METHODS [2]

Polynomial methods take advantage of the fact that
action of the A-matrlx and the s-variable are close-

ly related in a module theoretic sense [3]. Not yet

well advanced computatlonally, polynomial methods

nonetheless offer considerable insight into system

structure. As is to be expected, they resemble [he

geometric methods in this regard.
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c(=) =

(.01Cs 5 ÷ .l_bs _ _ 92.05s 3

-396.93 + 2Q_01s + 95491)

(-.08_s 5 ÷ 31.63s 4 + 3321,5s 3

+ 25500s 2 + 76068s + 78277)

(.bA6S 5 + '71._s 4 + 22L_s 3

-i_'].Z 2 -16_55z -121_95)

(-.013.% 5 - .437s _ * 68.2s 3

+ 1703.3s 2 + 1742.9s -3532.2'.

s 5 + 140,7s 4 _ 5337.6s 3 + 35491s z + I19690s + 133389

As an example, consider the selection of Kl(s) and

K_(s) In Figure 1 in order to achieve a sp_cifled

closed loop performance T(s). Such a specification

is, of course, a nontrlvial issue in its own right.

A complete treatment of such a specification can

be found in [2]. Relying upon the algebraic inter-

pretation of a transfer function as a pair of poly- AK
nomlals, such a design problem can be converted to i

a kernel calculation in R[s]-modules, where R[s]

denotes polynomials in s with coefficients in the

real number field R. Considerable manipulation BKI
must be carried out to set up this kernel problem,

which turns out to involve a 2x9 matrix of polyno-

mials up to the thirteenth degree, as shown below.

3 2
1.17 EIO s -1.37 EIO s

4 3
+4.40 El0 s -4.99 El0 s

5 4
+4.06 El0 s -4.21 El0 s

%1.18 EIO s 6 -I.07 El0 s 5

7 6
-1.24 E9 s +I,49 E9 z

8 7
-1.26 E9 s +1.99 E9 s

9 8
-2.07 E8 s +1.99 E8 s

-5.55 E6 s lO +6.93 E6 s 9

II i0
-4.80 E4 s +8.33 E4 s

-7.09 E1 s 12 ÷2.38 E2 s !I

+4.5 E-I s 13 -i.00 EO s 12

Solution involves automorphic transformations on

-- the domain of tile map represented

by this matrix to determine seven

"reduced basis" elements, sho_m be-

low which serve to describe the

kernel. From these, construction

of K.(S) and K.(s) involves two
I

linear comblna_ions of these seven

module elements, and standard reali-

zation methodology. Using first,

sixth, and seventh elements, and

the assumptions

cK1 CK2 %1 N2' DK1

realizations can be found in the manner

Compensator Realizations

_trix Elements

-2.0 -0.1626

12.298 0

2.5732 1.686

-0.9369 " 65.039

-3.2 0.I

CKI 1.092 0

-11.727 -9.725 2.888 5,944 0.824

BK2 36.416 3.28 -13.66 -37.83 9.147

0.119 0.777 2.362 9.973 -3.806

DK2 1.932 0.022 -1.265 -3.36 0.813

Responses to unit steps in the two reference chan-

nel are shown in Figures 2 and 3.

2.443E-3 0.0 0.0 0.0

1.601E-3 0.0 0.0 0.0 0.0 0.0

-3.824E-2 -7.199E-5 4.494E-4 4.146E-4 4.146E-4 4.146E-4

1.125E-3s -6. 649E-6s 1.288E-bs 1.188E-bs 5.151E-6s 5.83t'E-6s

-7. 898E-3 -6.41 E-4 0.0 0.0 0.0 0.0

1.87 E-4s -l.331E-bs 3.653-6s 3.322E-6s -:2.571E-6s -l.76gE-6s

-1.526E-3 9.685E-5 2.893E-6 0.0 O.0 O.O

6.54 E-ds -6.62!E-bs -4.642E-5s -4.423E-5s -2.416E-bs -l.847E-bs

0.0 5. GSIE-4 4. 794 I'.-4 _.4794E-4 0.0 0.0

1.843E-ds 1.713E-_s -4.245E-bs -3.076E-bs

0.0 0.0 0.0 -2.217E-6 -3.491E-5 0.0

+3.131E-6z 7.438E-6s

0.O 0.0 0.0 0.0 0.0 1.622E-5

2.935E-2 2.949E-4 -4.416E-4 -4.068E-4

8.69 E-ds

Solution of a problem by polynomial methods involves

at this time nontrivial computational overhead,

which is discussed in greater detail in [2]. It is

likely, however, that advances in software and hard-

ware will soon reduce this overhead. Advantages of
the method include a finite enumeration of all solu- --

tlons for a given T(s), and perhaps eventually a

finite description of all possible performances.

4, _ETL_N-DTFF_RF_CE-nETERMINANTS [4]
0.0 0.0 0.0

-2.25 E-4 -2.434 E-4

6.565E_dThe present computa-
tional situation for

0.0 polynomial methods

5.806E-dSmakes alternate fre-

O.0 quency domain approach-

8.467E_bseS of interest.

0.0 If we set K_ to zero

-l.314E-ASand denote _. by K,
I

0.0 we have the archetypal

1.279E_bsunlty negative feed-

back precompensatlou

O.O problem. If K is -

-l-421E-_Sassumed to have state

O.0 description (AK,BK,

9.972E-5_K,DK), then a com-

O.0 bined state descrlp-

2.955E-4_ion (Ac,Bc,Cc,Dc) for
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Plant

g(s)

Fig. i
Compensation Scheme for Polynomial Deslgn

Temperature
1

•50 _rust

2 4
SeconAs

Pig. 3

Closed Loop Response to Unit Step in

Commanded Temperature; Polynomial Design

J.214

JO

-J.214

-j.429

-J.643

-.343 -.172

c,

a2

0 .172

• !

Fig. 5

Nyqulst Plots for Compensated System;

Alpha Expansion

J.232

-j.232

-J .464

0.5

r__ ature

Seconds

Fig. 2

Closed Loop Response to Unit Step In

Commanded Thrust; Polynomial Design

-.556 -.371 -.18_ 0 .185 .371

I

_ KII

det (OK)

G22 K22

Fig. 4

Nyquist Plots for Compensated System;

Direct Expansion

-j.26

-J.52

-j .78

-j.io_

i

-I.037 -.622 -.207

Fig. 6

Nyqulst Plot for det(I+GK)

0 .207
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.8

.6

.4

.2

Seconds

0 1 2 3
I L a J I 0

Fig. 7

Same as Fig. 2 for Direct Approach Design

4]

2J

0j

-2J

I

-_J

-4 -2 0

Fig. 9

2 4

CARDIAD Plot, Column i, Uncompensated

Seconds
1 2 3

I ¢ ¢

-1

Temperatu__Ke .,.

Thrust

i

Fig. 8

Same as Fig. 3 for Direct Approach Design

the loop can be obtalned by an isomorphism on the

product of the state spaces X and XK associated
with the plant and compensator, respectlvely, pro-

vided that the gain matrLx DD E has no negatlve unit
eigenvalues. For this sLtuatton, one has the

:_

-,
-2j ". /

i
•...t"f._';;',':'_.','," _ " o l

"[ I '"

-2 -1 Fig. _o l

CARDIAD Plot, Column 2, Uncompensated

important relationship that

II+DDKI IsZ-A¢I=Iz+cKI Is_-AI Is_-A_l.

upon which a Nyqulst study can be based. We refer
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W

i'

.15J

oj

-.15j

/

I

I

¢ .........

-4.8 0 4.8

Fig. ii

CARDIAD Plot, Column l, Compensated System

-.15 0 .15

Fig. 12

CARDIAD Plot, Column 2, Compensated System

to such studies as return-dlfference-determlnant

methods, because of the presence of [I+GK[ in a key

role.

Construction of a Nyquist plot Is related to the

684
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expansion cho_;en for the return-difforencc-detor-

minan_. The obv|ous expans|on, shown for the pre-

sent illustrative case, is

1 + GllKll + G12K21 + C21K12 + C22K22 + ICKI;

and a less obvious, more recurslve expansion in an
NxN case Is

N

(-1)Is t ,
t=0

where

a 0 = i,
and

t-i

a t - (-1/t) _ a trace(GK) i-p,
pc0 P

for i > i.

Design based upon Nyqulst plots of II+CKI is made

challenging by the intricate way in which the com-

pensator K relates to the determinant. At present,

only introductory design studies based upon the

expansions above have been made [4]. An illustra-

tion is the compensator

K(s) = lO00(s+l) '

which was chosen by a cut-and-try method to increase

the speed of response of the second output. Figures

4 and 5 show the terms in the "obvious" and "a" ex-

pansions for the compensated system, with Figure 6

indicating the sum, exclusive of the unit term in

each expansion. Closed loop responses to reference

steps in each channel are shown in Figures 7 and 8.

Though the temperature response in Figure 8 is ac-

ceptable, the thrust response In Figure 7 exhibits

overshoot; and considerable interaction is evident.

In current practice, plots such as Figure 6 tend to

be the most useful. Design technique tends to focus

upon reducing the interaction evident in these re-

sults, which brings us to the next topic.

5. CARDIAIY--A DOMINANCE APPROACH [5]

In making a Nyquist plot of the determinant of re-

turn difference, H. H. Rosenbrock, [7] has estab-

lished that II+GKI enclrclements can be counted as

the algebraic sum of the enclrclements of the diago-

nal elements of return difference (I+GK)--provtded

that a condition of "dominance" holds on (I+GK).

Thls means, in our case, that the off-diagonal ele-

ment in a column Is smaller in magnitude than the

diagonal element, as a function of frequency (saJw).

Related to this stability oriented usage of the dom-

inance idea is a corresponding requirement on the

loop transmission GK, which is used to help with de-

coupling closed loop performance.

Selection of K(s) for this latter purpose, so that

G(Ju)K(Ju) Is dominant on its columns, has been

widely studied for the case in which K(s) is re-

stricted tO be a constant matrix. Much less has

been accomplished relative to the choice of a

dynamic K(s).

A new technique for this purpose is the CARDIAD



plot, acronymed for Compensator Acceptability

J_egton for D_gonal _ominance. Compensators

l(j_)+JYI(jW)

are assumed, without loss of generality for pre-

compensation. A CARDIAD plot for colu_ one of

the uncompensated system is sho_ in Fibre 9.

Each circle corresponds to a particular frequency

w, and acceptable th_f_e(X''Y') _ must be outsidedashed circles at q in question. Note

that Yl = 0 and x 1 suitably negative will be ac-
ceptable for all frequencies. Figure 10 shows a

CARDIAD plot for column two. Acceptable (x_,y_)
- - npairs must be inside solid circles at the freque -

cy in question.

3.

4.

6. '

The simple compensator

K(s) = .05s +

10 1

achieves dominance at all frequencies in both col-

u_s, as can be seen in Figures 11 and 12, which

consist only of solid circles each of which inclu-

des the origin.

7.

Hore detailed information about an application of

this method to design and simulation of a turbofan

engine control can be found in [6].

6. DISCUSSION

Recent activities in frequency domain analysis and

design of linear multlvartable control systems sug-

gest a certain resurgence of this viewpoint in use-

ful new ways. Though somewhat limited by space

constraints, we have tried to give a glimpse of
some of these methods in the context of a numeri-

cal model from the turbofan engine area. Focus

has been on polynomial methods, which bear close

resemblance to geometric control methods in an

abstract algebraic sense, and upon methods re-
lated to the determinant of return difference.

The CARDIAD plot, a new dynamical approach to

dominance, has been illustrated.
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Abstract

Recently, the CAPJ3I/d) (Complex Acceptability

Region for pI__Ago.al Dominance) plot has been in-

troduced and applied :o the problem of designing

dynamical precomp-nsation to achieve colu=.n do=_

Innate. Th_s pcpor illustrates several basic

features OE the ¢,ethod vhile using it to design a

stn_.l..e," low-order dynamical co=pensator _'hich a-

chieves dominance at f_',e operating points of a

realistic two-spool turbofan digital siraulation.

, ._J

I. Introduction

The CAP.DLa_ {Complex Acce0tability Region for.

DIAgonal Dominance) plot is a graphical technique

for choosing dynamical compensators to achieve

diagonal row or column de=innate, as defined by

Rosenbrock [1]._ Without essential loss of general-

ity. the compensator is assumed to have its di-

agonal elements/equal to unity, and a typical

CARDIAD plot describes the acccptzble range of the

real and imaginary parts of the off-diagonal el-
ements such'that dominance is achieved, l_e basic

graphical building block is the circle. Each

circle represents the acceptable range at a spec-

ific frequency. Solid circles are dra_ if ac-

ceptable real and l=agtnary pairs correspond to

points inside the circle, and dashed circles are

drawn if acceptable pairs correspond to points out-
side the circle. Plotted as a function of fre-

quency, these circles describe the acceptable range

o_ the cgmpensator ele=en_ in question, considered

as • complex function o! frequency.

Recently, CAR/}IAD plots have been shown to be

an effective design tool in dynamical precom-

pensatlon of multivartable plants to achieve do_-

inance [2, 3, 4, 5]. This paper focuses upon an-

other aspect of the CA._IAD plot, namely its

ability to assist with the classification o£ var-

ious operating points of a nonlinear system with

regard to their dominance possibilities and go help

with the design of compensators which achieve dora-

lnance of multiple operating polnts.

eThls woxk was supported in part by the'National

Aeronautics and Space Ad_nistration under Grant

NSG 3048 and in part by the National Science
¥oundatlon under Grant ENO 75-22322.
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2. Specrfic Assumptions

Plant models used to construct the plots In

the sequel have been generated from the general

purpose digital Jet engine simulator DYNGE?; [6]

under a load which provides behavior similar to

that of the F-IO0 two-spool turbofan engine at sea

level static conditions. The models have two in-

puts, five states, and t_,o outputs. They are lin-

earisations of DYNCEN obtained with the aid of the

DYGABCD package [7] under development a= _:ASA Lewis

Research Center. Fhysical dcscr_p_lon of the

states.can be found in the references [_]. The in-

puts are fuel flow and exhaust area: the outputs

are thrust and hlgh turbine inlet temperature.

Parameterlzation is aczompllshed through the nc_-

Inal value of the fucl flow WFB, which takes the

five values 2.1&5, 2.31, 2.475, 2.64, and 2.75

L_M/SEC, rangiug from aiow thrust condition Co

high thrust without augmentation. All the models

have been normalized.

Thus the plant transfer function =affix has

¢vo rows and two columns, and exhibits transfer

gunctlons of degree five _n both numerator and

denominator. Space llmltati_ns preclude their

presence io this m_nuscrlpt.

Denote the plant by G(s). Then the issue is

to select a precompensator KCs) in such a way that
O(S) K(s) is column dominant [i]. In particular,

_t is desired to select one K(s) so tha_ coIurm

dominance ls maintained over all five nominal fuel

flow conditions.

3. General CARDZAD Features

If the origin oE the CAR/)I_ plot for a given

column is included by all solid circles and ex-

cluded by all dashed circles, that column of thu

system is dominant without further compensation,

in as much as the origin represents unity com-

pensation. Thus, the eventunl goal of compensation

using the CARDIAD plot method is to arrive at a

system where all the C_J%DI,_ plots have this

feature. If there exists a point on the real axls

such that the point is included by all solid

circles and excluded by all dashed circles in the

CAKDZAD plot for a given column, then the choice

o_ the value of thls point In the off-dla$onal



entry which the CAILDIAD plot reprcsrnts will make

the column domlnant at all [r,'qucnclcs. t[ there

is no such point the CARDIAD plot drscrlbrs the

range of a frequency dependent off-dia_onal entry

which will _ke the column donlnant.

CUtDIAD plots for two input, two output sys-

,toms have so_e intercstlu8 features. A elrcle at

• specific frcquency in the C,W.DIAD plot /or one

column will be solid if and only if the o_hcr

column is dominant at that frequency. Thus, when

• system is do:inant at all frequencies, all the

circles In the CARDIAD plots wlll be solid and all

will contain the origin. Another interesting fea-

ture is the effect of a column switch, that is,

I_ltlplieatlon by a _trlx with the only non zero

elements being ones on the off-diaGonal. The

effects of such a switching of the inputs are that

all the solid circles beco_e dashed, all the dashed

circles beco_c solid, and the shapes of the colur=1

one and two plots are switched. This fact will be

used in the next section to achieve dominance in

the various set point models.

4. Design Example

The CARDIAD plots of the five uncompensated

models are all vcrysi-ilar in shape. This great

similarity suggests that one cc=pcnsator r_ight be

found that _ill :eke all of the models colu:n dom-

inant. The unto:pens•ted plots also show that a

Column switch _'ould rake the first column of each.

of the ¢odels 4eminent at all frequencies without

further compensation. Thus, K l was chosen to be

0 I"

1 0 •

rlfures I - I0 are the CARDIAD plots of G(s)K] for

the _Ive models. The repetition of the general

••hapes of the plots, which is unaffected by the

column switch, is very apparent. The plots also

show that the first column of each of the models

Is now dominant. This can be ascertained either

by the fact that _he origins of the column one

plots are included by all solid circles and ex-

cluded by all dashed circles or by noting that all

of the circles in the column t_Fo plots are solid.

TO achieve dominance in the Second col,,r-ns of

the models, it is clear that some sort of frequency

• depentent compensation will be necessary because

there exist no points on the real axes of the plots
which lle inside all of the solid circles. A first

choice of a function to {it the paths of the cir-

cles could be • simple first order function which

traces a semicircle through the complex plane as

the frequency varies. However, it is desired that

one such function be found that will work on all

five of the models; so, a second order compensator

viii be used to fit better the shape of the circles

a& the hlhger frequencies. Two things that should

be noted about the shapes of the circles in the

colu_ two plots are that the circles tend to be

larger for the lower values of fuel flow and that

in general, the center of the lowest frequency

(largest) circles moves toward the origin as the

nominal valt_c of the fuel flow Incre.1_es. Since

there is _ore _.lrgin for error in the lover n_-

tnal value of fuel flow models, a compensator

which iB flt to a rough avcr_e of the _Ive plots

and _hlch tends to be closer to the higher n,)_i:.al

Value of fucl _Iow models, m-[ght achieve do:In•nee

in ell five models.,

The average value of the center of the lowest

frequency circle of the five plots is -9.81. _tls

suggests that designing a co-.=_ensator to fit the

uo:inal fuel flow of 2.75 _odel which has as the

center of the lowest frequency circle the value of

-9.59 might achieve dominance in all of the mod-

els. The second order funtlon that was chosen =s

-.742s - 9.5g

.014s _ -.gggs + I.

and the next co=pcnsator, K2(s) , is

-.742s - 9.59
1

K(s) - .Olds 2 -.998s +i .

0 1

Thus, the overall compensation is K(s) given by

0 i

K(s) - -.7_2s - 9.5g
1

.Olds2- -.998s + I.

Figures Ii - 20 are the CARDI_ plots of

G(s)K(s) for the five models. It is clear that

they are all dominant at all frequencies since

all of the circles are solid and all include the

origin. Thus, one compensator has been found

which will m_ke all five of the models considered

in this paper dominant.

5. Conclusions

Through the use of CARDIAD plots, it has been

possible to achieve dominance over a range of

operating points of a Jet engine simulation. _he

compensator given above also achieves dominance at

all but a very narrow range of frequencies in the

model of another operating point. The results

suggest two things. First, using the CARDIAD

plots as a guide, it could be possible to design

a :ompensator which varies wlth the nominal value

of the fuel flow and achieves global dominance

over a wide range of operating points. This is

currently being studied. Second, the repetitive

shape of the CAKDIAD plots over the range of

operating points suggests that the CA_DI,_J) plot

might be a useful tool in the classification of

operating points with regard to interaction. Such

a feature could be quite helpful in analysis of

which models to use over flight envelopes varying

from sea level to high altitude and from low

through high thrust.
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1.2

THE THEME PROBLEM

Michael K. Saln

Department of Electrical En_neerlng

University of Notre Dame

Notre Dame, Indiana

Foreword

From the outset, the use of a Theme Problem has posed certain challenges. Authors

from academic backgrounds tend to be in need of higilly detailed information about

plant and specifications, while workers in industry and laboratories must often be

satlsfi_d with indirect information and sometlnes with none at all. We have tried

to arrange a reasonable compromise somewhere on middle ground. Our decision to

select a problem related to a realistic modern turbofan engine had special ramifi-

cations of its o%m, not the least of which was the fact that certain typus of addi-

tional data were precluded for proprietary or other reasons. We believed all along

that the advantages of data realism outweigh the disadvantages of incomplete infor-

mation.

The chronology of the Theme Problem begins in late summer, 1976, during discussions

with J. L. Melsa. Subsequent contacts with several potential Forum participants

led to the drafting of a Tentative Theme Problem Description, which was sent out to

various workers for critique in early 1977. K_en evaluations were in hand, a The_e

Problem Description was prepared on March l, 1977 and became the working document

for authors preparing papers for the meeting. Communications with several addition-

al researchers established the need for minor modifications and clarifications,

which were decided at a corm_ittee meeting held during the Joint Automatic Control

Conference at San Francisco in June, 1977. These decisions for_ed the basis for an

addition Theme Problem Memorandum mailed to all participants on July 18, 1977.

All these adjustments are included in the Final Theme Problem Description, which is

included here.

Any clarity which may be present in this final problem description is due in large

part to the valued advice of many colleagues, among whom I must especially mention

R. L. DeHoff, R. D. Hackney, g. Lehtlnen, W. C. Merrill, J. L. Peczkowskl, C. A.

Skira, and H. A. Spang, III. Credit for any and all obscurities must, of necessity.

accrue to the author.

2O
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ABSTRACT

The theme design problem should serve the Forum goals in at least three ways. Flrs%

it should help to unlfv the presentations and, thus, make them more useful for group

study after publication. Second, it should help to make the Forum relevant to the

present-day design world by focusing upon a real system of considerable current in-

terest. Third, it should help to dellneate the state of com_utatlonal readiness of

the various design viewpoints, and so help to point out where additional numerical

researches would be useful.

Caveat: It is i_portant to recognize the generally positive intent involved with

the use of th_s problem. It is no__! intended that the theme problem usage degenerate

into a computational contest.

I. INTRODUCTION

A very important developing area for linear multivarlable control has arisen because

c f recent increases in the co_plexlty of aircraft turbine engines. Engines in use

todai: have, essentially, the one control variable of fuel flow, though some _ake use

of a variable nozzle area which is not unlike the iris diaphragm that controls

aperture settings in a camera. Engines in the not-so-distant future can be expected

to permit control of vanes in the stator portions of the various compressor stages.

Further do_ the development llne are engines with enough variable geometry to re-

ceive the informal designation of "rubber engines" by research engineers in the

industry.

It is widely accepted that the older, workhorse, hydromechanlcal control methods are

not equal to these new tasks and that they will, therefore, give way to electronic

digital ccntrol. The entrance of the digital computer opens up vast numbers of new

design possibilities, which are now beginning to receive increased attention in the

industry. The central role played by the aircraft turbine engines in civil and

military aviation makes clear the economic import of these trends. It would be hard

to select a more timely theme design example for comparison of linear control alter-

natives than the Jet engine.

In the United States, a Joint study is now underway on the Pratt & Whitney FI00-PW-

100 afterburnlng turbofan, a iow-bypass-ratlo, twln-spool, axlal-flow engine. Spon-

sored by the Air Force and by the National Aeronautics and Space Administration,

this study focuses on the linear quadratic regulator theory, applied at multiple

operating points in the control regime.

One effect of the theme usage of such a plant in the NEC Forum should be a broaden-

ing of the design discussion to include other design viewpoints as well.

2. PLANT

The numerical model of the Jet engine is supplied in (A,B,C,D) form on Attachment I.

For the A and C matrices, note that columns 9-16 are listed below columns 1-8. This

model is for zero altitude and for a power lever angle (PLA) of 83 degrees, which is

near maximum non-afterburnlng power. The motivation for choosing this operating

point comes from the fact that every engine has to pass through this condltlon, as,

for example, on takeoff. Also suppl_ed is a llst of the input, state, and output

variables associated with this model. These two pages are taken from the repor¢

21
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R. J. Hiller and R. D. Hackney, "FIO0

Multlvariable Control System Models/

Design Criteria," Pratt and _itney

Aircraft Group, United Technologies

Corporation, West Palm Beach, Florida,

November 1976.

Because a number of the techniques which will he discussed at the Forum have graphi-

cal aspects, it is planned to facilitate the inclusion of curves in the publication

by limiting the plant to three control inputs. In consultation with numbers of our

Theme Problem Advisory Co_.mittee, we have selected U., U?, and U 3 as these inputs.
Workers who feel an absolute necessity to use all fi_e i_puts are welcome to do so;

however, we would ask that in such a case they provide a comparison of the effect

of using five inputs over and above that of using only three. This request is

designed to increase the comparability of the various design results.

Actuator information for the three control inputs is given in Attachment 2. Also

provided is information associated with the actuation of U 4, if that input is used

in addition to U I, Uo, and U_. Finally, should U 5 be used in addition to UI, U o,

and U_, a servo _ime_constan_ of 0.02 sec. can be assumed for actuation. Vario0s

rate _imits on the actuators can be noted, as in Table A.

Table A

Actuator Rate Limits

U 1 15,800 (ib/hr)/sec.

U 2 3.6 Ft2/sec.

U 3 48 Deg/sec.

U 4 40 Deg/sec.

The actuators have some limits, also, which will be mentioned here. On U., it rm_y
' • • ' J

be assumed that the limit is + 6 , On U_, a llmlt arzses because the nozzle area

is pretty well down to its minlmum at this operating point; the limit is assumed to

be about i square feet in tha_ direction.

The Theme Problem models are in absolute, unnormalized form, without any mention of

the set point values. This makes it difficult to size inputs. The committee worked

out a proposal to supply "ballpark" set point values so that the model could be

normalized. Unfortunately, it was not possible to obtain even such approximate in-

formation.

A consequence of this fact is tha= the absolute rate limits of Table A have meaning

only in relationship to the size of reference commands assumed. Because we are un-

able to supply the suggested reference command, the effect of actuator rate limits

can be treated only hypothetlcally; and we have to leave the issue of whether to do

this, and how to do this, in the hands of the authors.

Turning now to the sensed variables, we have available X1, X2, X , X , and (X._ ÷

":13 ), the last o_ whl is denoted FTIT for "fan turblne'inlet t_mpe_ature." iz

S_nsor tlme c.:nst.mts i. ""-nnds are llsted in Table B.

_2
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Table B

Sensor Tlme Constants

X I 0.03

X2 0.05

X 3 0.05

X 5 O. 05

Sensing of FTIT is a bit more elaborate and is indicated on Attachment 3.

3. ENVIRONMENT

Measurement noise is on the order of 1%; and state noise is negligible. Therefore

i_ is not planned to supply any noise data. Authors wishing to make noise studies

=ust rake their own assumptions. This is not unrealistic for the present stage of

discussion. Though some techniques may well make use of observers or dynamical out-

put feedback, no formal stress on filters is anticipated. The Forum, then, is

visualized primarily as a control meeCing, although contributed papers in the s_oc-

hastic area will be accepted if they contribute to the Forum theme.

Practice in the industry involves the use of multiple linear models at various oper-

ating points from sea level to high altitude and from low to high thrust. As oper-

ation transitions from the neighborhood of one operating point to the neighborhood

of ano:her, _hese models change in consonance with some physical variable. Para-

meter variation is, therefore, an aspect of design.

But publicly available neighboring linear models are not near enough to the Theme

Problem model to provide meaningful data on parametric variation. This fact, com-

bined with lack of set point information, led the cormnlttee to suggest a 5% change

in etgenvalues as one, hopefully useful, measure of such variation. Because normal-

ization of the model is a similarity transformation, this characterization is in-
dependent of set point.

4. REDUCED ORDER MODELS

Approximate eigenvalues of the Theme Problem plant are -577, -176, -59.2, -50.7,

-47.1, -38.7, -21.3 _ i.822, -17.] _ i4.78, -19.0, -6.71 _ it.31, -2.62, -1.91,
-.648. It is the nature of the Jet engine control problem that these can usually

be well identified with physical variables. For example, -.648 associates with Xln,

-1.91 associates with X.., -2.62 associates with X2, and so forth. X. is related--i5 l
to the eigenvalue pair -6.71 _ il.31. This type of information can be deduced

from a study of the eigenvectors corresponding to a particular eigenvalue. It can
be expected that actuator modes, such as that involved with fuel flow, will enter

into this llst. Some discussion on this point can be found in R. L. DeHoff and

_. g. Hall, Jr., "Design of a Multlvarlable Controller for an Advanced Turbofan

Engine," Proceedings 1976 1KEg Conference on Decision and Control, page 1002.

In the interest of offering some assistance to authors who might be having computa-

tional difficulty with the full size problem, the following reduced model has been
fade available by Dr. DeHoff of Systems Control, Inc. (Vt.). It Is a model which

neglects sensor dynamics, augsencs the plant by the dominant actuator dynamics, and

then reduces to fifth order. The resulting flve states are

X1 = Fan Speed (rpm)

23
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X 2

X 3

i4

X 5

^

Note that the "Aug'mentor" Pressure X 3 Is not to be identified with X5; the quantt-

ties are not defined at the same physical location. Note also that X5 was not
one of the original states.

Remark: The U_ Actuator diagram shows a Servo System gain of 2.4. It has cone to

o--_-r-_tentlon that a more realistic number for this gain would be about 12.O. The

effect of this gain change is to take the dominant CIIW position actuator eignevalue

from a location of high dominance in the overall plant-actuator system to a location

of considerably less dominance. It is no__._ttnecessary for authors to make this chan_e

if they have already completed their calculations, inasmuch as the 2.4 gain apparent-

ly is one of those "glitches" which crept in an uninvited manner. Some authors may

choose to compare the effect of the gain 12.0 with the gain 2.4, if time and space

permits. We have included this remark here so that the reduced order model, which

has the same controls and outputs as the full size system, may be more understand-

= Compressor Speed (rpm)

- "Augmentor" Pressure (psia)

= Fuel Flow (lb./hr.)

= Burner Pressure (psia)

able.

A (5 x 5)

-.3245E+O1 -.2158E+O1 -.9155E+03 .5731E+00 .1342E+O3

.1642E+O1 -.5941E+O1 -.2816E+03 .1897E+00 .5705E+O2

.1685E-O1 -.2554E-01 -.I003E+02 .7994E-O2 .5807E+00

.0000 .0000 .0000 -.IO00E+02 .OO00

-.2163E+01 .6862E+01 .7405E+03 .I195E+01 -.1715E+03

B (5 x 5)

.1432E-01 -.3553E+O3 -.9906E+02 -.1549E+O2 .2220E+O5

.2871E+OO .7286E+O3 .2514E+02 -.6487E+02 .8122E+O4

-.2469E-O2 -.1030E+O3 .6333E+00 -.3213E+00 -.7418E+O2

.1000E+O2 .0000 .00OO .O000 .O000

-.1311E+O0 .3295E+03 -.2500E+02 .6257E+02 -.6445E+O5

c (S x 5)

.1662E+O1 -.1768E+01 .7999E+02 -.1890E+00 .3771E+O2

.1383E-01 .3142E-05 -.I060E-OI .1289E-03 -.1839E-O6

.1694E+00 -.I129E+00 -.4959E+O1 .7386E-01 -.1835E+OO

.7590E-04 .3269E-05 -.1477E-01 .2284E-05 .4315E-04

-.4859E-04 .1381E-03 .II40E-01 .1951E-04 -.2688E-02

D (5 x 5)

.1302E+00 .1992E+03 .4802E+02 -.1503E+02 .i083E+05

.1449E-06 .3395E+00 .6806E+00 .2812E-03 .3204E-03

.2967E-01 .7927E+O2 .2567E+01 -.7631E+00 .2066E+O4

.IO46E-05 -.7720E-02 -,5814E-02 .I157E-03 .6605E-01

-.8395E-O5 -.7897E-02 -.6841E-03 -.9643E-03 -.2815E4490
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5. SPECIFICATIONS

The overall viewpoint of the controller is quite simple. The pilot has one lever,

rhich we might intuitively call the throttle and which sets what is called in the

industry the "power lever angle." Basically, the pilot increases the lever angle

to obtain more thrust. All the other variables must be controlled so as to achieve

the new thrust quickly, but without overshoot and without violating some important

physical ccnsiderations. An example of one of these is the temperature at the inlet

to the "high" turbine just aft of the burner. This temperature is ordinarily

_cheduled very near its maximum safe value, and temperature increases are not wel-

come because the turbine elements are thin, respond very fast, and can be permanent-

ly dar_ged or create a need for more frequent engine overhauls. Another example of

a co_tralnt is the various undesirable stall conditions in the compressor.

This problem comes down to us in the following form. Assuming a step change in

Taxer lever angle, we want to move the engine to a slightly different operating

point in the above described acceptable dynamic fashion. The power lever angle

change is converted by a master engine scheduler into a reference input for our

!inearized feedback model. The nature of this reference input is not highly specif-

ic. _tep in_u_s are co..-mnonly studied. It is not likely that highly detailed infor-

z:at_on about these references will be available, but we can try to firm up any par-

ticulnr _s_uus vhich r_y be crucial to one paper or another. The exact nature of

th¢_;e references gets one into the exact nature of the schedulers. It does not seem

too _roductive in a linear meeting to go very far into such "global" issues. If

_reater reference variety is needed, it can probably be safely assumed. It would

be good, however, if each paper tried to discuss at least the reference step.

For purposes of design, we can group the variables into two families. Y , Y , X ,

and X_ are desired to respond fast wlthou= overshoot. Y4 should not dec_eas_ mo_e

than ".05; Y5 should not decrease more than .15.

Eer, ark: _e decrease limits on Y4 and ¥_ are to 5e regarded in the same spirit as

the U 3 actuator gain change in the preceding section. If calculations are complete,
there is no requirement to incorporate it. Some authors may wish to study its

effect, however.

6. VIEWPOINT

%4e believe that the theme problem should appear in each presentation as the major,

and Frobably the only, illustration of the particular design methodology being

described. We visualize each paper as an exposition of design viewpoint, with Jet

engine illustration. We do not visualize the paper as an exposition of Jet engine

design. In other words, the theme problem will be an apparent thread through the

fabric of the Forum, but the pattern of the fabric will be set by the various linear

control alternatives as entities in themselves. Put in yet another way, the Forum

is on "Alternatives for Linear Multivariable Control" and is no._.__tupon "Various

Approaches to Jet Engine Control."

25
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i. Engine State Variables

X I = Fan Speed, SNFAN (N I) - rpm

X 2 =

X 3 =

X 4 "

X 5 =

X 6 "

X 7 =

X 8 =

X 9 =

Xlo =

XII °

X12 =

X13 =

XI4

XI5 =

X16

2. Engine Inputs

U 1 = Main Burner Fuel Flow, k'F_ - ib/hr

U 2 = Nozzle Jet Area, Aj - ft 2

U 3 = Inle_ Guide Vane Position, CIVV -deg

U 4 - High Variable Starer Position, RC%W - deE

U 5 - Customer Compressor Bleed Flow, BLC - %

3. Engine Outputs

Compressor Speed, SNCOM (N 2) - rpm

Compressor Discharge Pressure, Pt3 - psia

Interturbine Volume Pressure, Pt4.5 - psla

Augmenter Pressure, Pt7m - psia

Fan Inside Diameter Discharge Temperature, Tt2.5 h - °R

Duct Temperature, Tt2.5 c - °R

Compressor Discharge Temperature, Tt3 - °R

Burner Exit Fast Response Temperature, TtAhi - °R

Burner Exit Slow Response Temperature, Tt41o - °R

Burner Exit Total Temperature, Tt4 - °R

Fan Turbine Inlet Fast Response Temperature, Tt4.Shi

Fan Turbine Inlet Slow Response Temperature, Tt4.510

Fan Turbine Exit Temperature, Tt5 - °R

Duct Exit Te::porature, Tt6 c - °R

Duet Exit Temperature, Tt7 m - °R

Y1 = Engine Net Thrust Level, FN - Ib

Y2 : Total Engine Airflow, hTAN - Ib/sec

Y3 - Turbine Inlet Temperature, Tt4 - °R

Y4 _ Fan Stall Margin, Sb_F

Y5 = Compressor Stall Margin, S_C

. o R

_ o R
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ATTACHMENT 2

Metering Valve

FuelRequestP1 ow._I 1 IJ 0.02S + 1

Pump Controller

I 1 |Puol_Io_o.ls ÷l ITo_n_ij

Aj Request

Servo System

_- O.OiS + i

U 1 Actuator

Air Motor Dynamics

2:, SIS +-- + i

a n 2 u n

_n 6ttz

0.56

A. Position
3

Position

Reques _:

U 2 Actuator

Servo Power

Stepper Motor System System Cylinder

0.02S + i O 01S + 1

U 3 Actuator

Servo System Power Cylinder

U4 Actuator
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ATTACHMENT 3

FTIT

FTIT Sensor

O. 309 .
0.595S + i

G.691

5.49S + i

FTIT

Sensed

3O
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ABSTRACT .

The determinant of return difference establishes a crucial'link between open and

closed loop characteristic polynomials in multivariable feedback control systems.

As a result, Nyquist constructions on this determinant carry important design infor-

mation. One way to extract this information is by achieving diagonal dominance.

This paper presents a method which uses dynamical input compensation to achieve

column _ominance. Application to the Theme Problem is included.

i. INTRODUCTION

Recent advances in the generalized Nyquist theory for linear multivariable feedback

control systems have brought about very substantial new opportunities for research

in the area of frequency domain control design. Most of these advances are predi-

cated upon the relationship between closed loop and open loop characteristic poly-
nomials--as embodied in the determinant of return difference. Features of the Nyquist

diagram of this determinant are important aids to control system design.

It is apparent that a diagonal return difference will decompose the return differ-

ence determinant into a product of its diagonal elements, thus reducing a multi-

variable problem to classical single-input, single-output form. Less apparent, but

of much greater practical significance is the fact that an approximately diagonal
return difference.can have essentially the same reducing effect on a multivariable

problem, when regarded from a generalized Nyquist viewpoint. The best known of

these approximately diagonal conditions has come to be described as diagonal domi-

nance. A productive design strategy can be mounted, therefore, in two steps. First,

achieve diagonal dominance; second, apply classical single-input, single-output

techniques [I].

Unfortunately, methods to attain diagonal dominance have been rather slow to advance.

For the most part, they have been restricted to the selection of constant real com-

pensators, the entries of which are typically obtained by procedures of optimization

that do little to preserve some of the classical advantages, such as insight, affor-

ded by the frequency domain approach. Much work needs yet to be done on the theory

of attaining diagonal dominance by use of frequency dependent, dynamical compensation.

This paper considers the application to the Theme Problem of a useful new design aid

called the CARDIAD Plot. In its present form, this method deals with the design of

a dynamic precompensator for the plant, in such a way that column dominance is

achieved. An important feature of the approach is the enhancement of designer in-

sight toward the coupling present in a plant.

Section 2 introduces the CARDIAD method for two-input, two-output plants, and Sec-

tion 3 provides an illustration of certain basic features of the method, in the con-

text of a jet engine plant related to the Theme Problem. Section 4 gives a genera-

lization of the idea to three inputs and three outputs, and Section 5 applies these

results to the Theme Problem. Conclusions appear in Section 6.
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2. GRAPHICALAPPROACH

The i th column of a matrix Z(s) is said to be dominant if

n

for all s on a Nyquist contour D. A similar definition can be made for row domi-

nance.

For a two-input, two-output system, Eq. (i) can be equivalently written

Izli(s)l 2 - }zji(s) 12 > 0 i # J .._ (2)

for all s on D.

Consider a two-input, two-output system having only precompensation. The open loop

transfer function of the system is

Q(s) = G(s)K(s). (3)

Let K(s):be restricted to the form

K(s) = . (4)

l(S)

Since any matrix having nonzero entries on its main diagonal may be put into this

form by multiplication with a diagonal matrix, and since multiplication by a diago-

nal matrix does not affect dominance, this can be done without essential loss of gen-

erality.

Let G(s) be evaluated at a specific frequency _. Then

Lrn+ inJ rn + 122JJ i+ Ylj 1
(s)

Performing the indicated matrix multiplication, the four entries in the matrix

Q(s)_ J_= are

qll " rll + illJ + (r12 + il2J ) (Xl + Yl j )' (6)

q12 " r12 + il2J + (rll + illJ" (x2 + Y2j)' (7)

q21 " r21 + 121J + (r22 + i22J)(xl + Ylj)' (8)

q22 = r22 + 122J + (r21 + i21J)(x2 + Y2 j)" (9)

I will be dominant ifFrom Eq. (2), the first column of Q(s) s-jm

lqlll 2 - Iq2112 > O. (i0)
.l

Performing the indicated subtraction results in what will be referred to as the domi-

nance inequality for column i. The form of this inequality is
2

fl(xl,Yl) - ax_ + ay I + 2bx I + 2cy I + d 0,

where the constants are defined as

2 + 2 2 2
a - r12 i12 - r22 - 122

(ii)

66

R_



b = rllrl2 + illil2 - r21r22 - i21i22,

c = rl2111 + r21i22 - rllil2 - r22i21,

2 2 2 2

d = rll + ill - r21 - i21.

(12)

(13)

(14)

Note that each constant is composed of complex field elements which come from evalu-

ation of G(s) at a specific frequency m.

The function fl(Xl,Yl) is a paraboloid in three-space and is normal to the Xl-Y 1

plane. If this paraboloid intersects the xl-Y I plane, the intersection will be a
circle. Standard maximum-minimum analysis glves that the maximum or minimum of the

dominance function occurs at

x I = -b/a Yl = -c/a (15)

To determine if the point that was found is a minimum or a maximum, the hessian is

formed. If the hessian is negative definite, the point found is a maximum. If the

hessian'is positive definite, the point found is a minimum. The hessian of the domi-
nance equation for column one is

so that the second derivative test reduces to a test on the sign of a.

Proceeding from this analysis, there are four possible cases. The point that was

found was a positive maximum, positive minimum, negative maximum, or negative mini-

mum. The two cases that are of interest are the positive maximum and the negative

minimum since it has been shown [2] that the other two cases cannot occur. In each

of the cases of interest, the positive maximum and the negative minimum, there is

an intersection of the xl-y I plane. Recalling that the column will be dominant i f

fl(xl,Yl) is positive, t_e analysis of the two cases is as follows. In the positive

maximum case, the values of x I and Yl which will result in solution of the dominance

inequality are those points which lie inside the intersection of fl(x],Yl) and the

Xl-y I plane, that is the circle which is the solution of fl(xl,Yl) 0. In the nega-

tive minimum case, the choices of x I and Yl which result in solution of the domi-
nance inequality are those points which lie outside the circle of intersection.

Thus, the intersection of the dominance function fl(xl,Yl) for column one and the

xl-Y 1 mlane defines the acceptable range of x I and Yl such that the system will be

dominant in the first column at the specific frequency at which the analysis was per-

formed. In like fashion, the second column of the system may be analyzed, and the

acceptable choices of x2 and Y2 may be determined.

If this dominance analysis is repeated over a range of frequencies, and the result-

ing circles of intersection plotted, a CARDIAD (Complex Acceptability Region for

DIAgonal D_ominance) Plot is produced. A solid circle is drawn if the acceptable

choice of x and y lie inside the circle, and a dashed circle is drawn if the accept-

able region is outside the circle of intersection. Associated with each CARDIAD plot

is a locus of centers plot, which indicates the centers and labels the frequency of

each. Space limitations do not allow the locus of centers plots to be included with

the CARDIAD plots in this paper, but they will be mentioned and referenced as neces-

sary.
3. ILLUSTRATION

Figs. i and 2 are CARDIAD Plots of a two-input, five-state, two-output model of a

Jet engine. The model is derived from a Jet engine simulator called DYNGEN [3,4]

and represents an F-IO0 turbofan jet engine with a fuel flow of 2.75 Lbm/sec. (full
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Fig. i. Column i, Uncompensated Fig. 2. Column 2, Uncompensated

throttle without afterburners). The inputs are fuel flow and exhaust area and the

outputs are thrust and high turbine inlet temperature. This model is one of a

series of such models presently being used in a set point study of'an F-100 like

Jet engine.

The analysis of CARDIAD plots proceeds as follows. Recall that, at any given fre-

quency, the acceptable region is outside the circle if the circle is dashed or

inside if the circle is solid. The first question of interest is whether the columns

of the system are dominant uncompensated. For this to be the case, the origin of

the CARDIAD plo_ must be included in all solid circles and excluded by all dashed

circles, since the origin represents identity compensation of the column. This is

not the case for either of the two CARDIAD plots of this system. The next question

is whether the system can be made dominant by constant real precompensation. If

this is the case, there will exist a point on the real axis which lies inside all

solid circles and outside all dashed circles. Fig. 1 shows that the first column

of the system can be made dominant at all frequencies by the choice of any constant

x_ which lies outside all the dashed circles of the CARDIAD plot. Fig. 2 shows
t_at there exists no constant value that will make the second column of the system

dominant at all frequencies. Thus, some form of frequency dependent precompensation

will be necessary.

Before proceeding with dominating this system, some of the features of CARDIAD plots

should be mentioned. One property is that a circle at a specific frequency in the

plot for one column will be solid if the other column is dominant at that frequency
and will be dashed if the other column is not dominant. From this fact it follows

that the transition from one type of circle to the other in the CARDIAD plot for

one column occurs when there is a change in dominance in the other column. Once

again considering Figs. i and 2, these facts indicate that the second column is not

dominant at any frequency since all of the circles in the CARDIAD plot for the first

column are dashed and that the first column is dominant at low frequencies (until

m=7) because the circles in the CARDIAD plot for the second colunn are solid for

this and all lower frequencies.

A second feature of the CARDIAD Plot is the effects of a column switch on the plots,



that is, premultiplication by a matrix with the only nonzero entries being off-dia-
gonal l's. The effects of such a switching of the inputs are that all solid circles
become dashed circles, all dashed circles become solid, and the shapes of the column

one and two plots are switched. The CARDIAD plots of the system with this type of

compensation are given in Figs. 3 and 4. Note that the first column is now domi-

nant at all frequencies without further compensation. This fact can be ascertained

L

,'- '

Fig. 3. Column i, G(s)*K 1 Fig. 4. Column 2, G(s)*K 1

either from the fact that the origin in the CARDIAD plot for column one is included

by all solid circles and excluded by all dashed circles, or from the fact that all

of the circles in the CARDIAD plot for the second column are solid.

Since switching the inputs makes one column dominant uncompensated, it seems a logi-

cal first step in compensating for dominance at all frequencies. Thus, K1 is chosen

to be [0 i]Z 1 = . (17)
1 0

It is still necessary to make the second column of the system dominant. From the

CARDIAD plot for this column (Fig. 4), it is apparent that frequency dependent com-

pensation will be necessary since there exists no point in the real axis which is

included in all the solid circles of this plo_. To design such a compensator, a

function of s is fitted to the shape of the CARDIAD plot so that, at any given fre-

quency, the compensator lies inside the solid circle associated with the same fre-

quency in the CARDIAD plot. While it is possible to find a first order compensator

that will make this column dominant, a second order compensator has been used be-

cause this same compensator could also achieve dominance at four other set points

of the model. K2(s) is the compensator that achieves dominance in the second column

of G(s)*K I. -.742s - 9.59

X2(s) = (18)
I
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The overall compensation is KI*K2(s) = K(s) given below.

-0.742s - 9.59 .

.014s 2 - .998s + 1.

The CARDIAD plots of the system with this compensator are given in Figs. 5 and 6.
It is obvious either from the fact that only solid circles appear in the plots or

from the fact that all the solid circles include the origin that each column of the

system is now dominant at all frequencies.

(19)

Fig. 5. Column i, G(s)*K(s) Fig. 6. Column 2, G(s)*K(s)

4. GENERALIZATION

The CARDIAD Plot approach to system dominance in the three-input, three-output case

is similar to the approach in the two-input, two-output case.
th

The actual condition for dominance in the 3 x 3 case is the i column of a matrix

Z(s) will be dominant if
3

I_iics) l , I I_jics>l

for all s on D. If both sides of this inequality are squared as in the 2 x 2 case,

then an equivalent condition is

IziiCs) I > I_jics) I .

Using inequality (21), the condition for dominance in, say, the first column is

l_ll(S)l 2 > Izzl(s)l z ÷ lZBlCS)l 2 ÷ 21_zlC_)li_31Cs)l.

The cross term produced by squaring adds non-integral power terms to the dominance

(20)

(21)

(22)

?0
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inequality for the 3 x 3 system. To circumvent this problem, the last term of ine-

quality (22) is replaced by an upper bound. Since

12 2 (s)II I (23)Izml(s) + Iz31(s) I _ 21z21 z31(s)

with equality when _(s) I = Izq](s)I, it is convenient to replace the last term
of inequality (22) the left-_ember of inequality (23). This yields a suffi-

cient condition for dominance. For column i, the condition is

[Zll(S)12 - 21z21(s) 12 - 21z31(s)l 2 > O; (241

and the general form is •

3

lzli(s) 12 -2 [ lzj (all 2 > 0 i = 1,2,3 (251
j=l i ' "

j#i

From inequality (2_), the derivation of the dominance equation for the 3 x 3 case

proceeds analogously to the 2 x 2 derivation. The general form of the compensator

used in the analysis is

K(s) =

I 1 =12(s) =13(s)]
21(s) i a23(s)

_31 (s) e32 (s) 1 --

(26)

where _i_ _xij + Yij j"

S=j_

Once again, the open loop transfer function matrix G(s) and the general form (26) of

the compensator are evaluated at a specific frequency and multiplied to form Q(jm).

Then, using inequality (25), a dominance inequality for each of the three columns of

Q(J_) can be formed. For example, the first column of Q(jm) will be dominant at the

frequency _ if

Iqll -21q2112-21q3l 12 > o (271

and the dominance function for column 1 is

2 2 2 2

f1(x21'Y21'x31'Y31) " Cl + x21 c2 + Y21 c2 + x31 c3 + Y31 c3

+ 2x21c4 + 2Y21C5 + 2x31c6 + 2731c7 + 2x21x31c8 (28)

+ 2Y21Y31C8 + 2x21Y31C 9 - 2x31Y21C 9 > 0

where the constantscl-c q are functions of G(s) evaluated at the frequency _. Simi-
lar dominance functibns-can be derived for the other two columns.

The maxlmum-mlnlmum analysis is performed in two different ways. In the first

approach, which will be referred to as the standard analysis, the variables of the

dominance inequality are first paired by the entry in the compensator which they

represent; and the maxlmum-minlmum analysis is performed on each pair assuming that

the other pair is zero. The resulting maximums or minimums are

x21 " -c4/c2; Y21 = -c5/c2'

x31 = -c6/c3; Y31 " "c7/c3"
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The hessian for each pair of variables is diagonal and the second derivative test
once again reduces to a sign test.

The dominanceanalysis is repeated over a range of frequencies and CARDIADplots
result. There is one plot for each off-diagonal entry in the compensator and each
entry is plotted assuming that the other off-diagonal entry in the column is zero.
Using CARDIADplots generated by the standard analysis, dominance is achieved by
setting one of the off-diagonal entries to zero while the other is chosen as was the
case in the 2 x 2 design.

There does not always exist a value in one off-diagonal entry of a column of the com-
pensator that will make the column of the system dominant when the other off-diagonal
entry in that column of the compensator is zero. Whenthis occurs, the maximum-
minimumanalysis is performed by finding the full gradient of the dominance function.
The hessian is no longer diagonal but the eigenvalues of the hessian are all nega-
tive in Section 5, so the point that is found is a maximum. Design which is per-
formed on plots generated by the full gradient analysis involves both of the off-
diagonal entries of a coiumn of the compensator, and functions must be fit to each
to achieve dominance.

A new s_bol appears in the plots. At any given frequency, unless dominance can be
achieved at that frequency with the other entry zero, a small triangle is drawn
which shows the best that can be done towards achieving dominance. It should be
noted that the triangle can appear in plots generated by either analysis. In the
standard analysis CARDIADplots, if triangles appear in one plot for a column but
not the other, dominancecan be achieved by keeping the entry in which the triangles
appeared zero and using the other entry to achieve dominance. In the full gradient
analysis plots, triangles appearing in both plots do not mean that dominance cannot
be achieved. Given that one entry in the compensator is chosen exactly on the tri-
angle at a certain frequency, there is a radius of points around the triangle in
the other plot that will achieve dominance; but since the size of the circle is a
function of how well the other entry is fit to the triangles, such a circle could
easily be misleading. Both of these points will be illustrated in the next section.

5. THEME PROBLEM ANALYSIS

The following design is performed on the reduced order model of the theme problem

with state feedback. The states being fed back are the two turbine speeds and the

pressure Pb" Dominance will be achieved using only precompensation.

The plots for the uncompensated system using the standard dominance analysis showed

that the first two columns of the system could be made dominant with one off-diag-

onal entry in each of the first two columns of the compensator zero. The third

column, however, could not be made dominant at any frequency with either one of the

off-diagonal entries in the third column zero. Physically, this indicates that the

principal effects of all three inputs (fuel flow, exhaust area, and guide vanes)

are on the two speed states. To facilitate achieving dominance, a column switch was

done by choosing the first compensator to be

K 1 = 0 1 •

0 0

Figs. 7-12 are the CARDIAD plots of the system with this compensator and use the

standard dominance analysis. The plots for the entries in the first column, Figs.

7 and 8, show that the first column is dominant without further compensation, since

the origin of each plot is included inside all solid circles and excluded by all

dashed circles. Figs. 9 and i0 are the CARDIAD plots for the second column. Fig.

I0, the plot for the 3,2 entry, has several triangles in it, indicating that, at
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Fig. 8. G(s)*KI, 3,1 Entry

Fig. 9. G(s)*KI, 1,2 Entry Fig. i0. G(s)*KI, 3,2 Entry

the frequencies where they occur, there is no value in the 3,2 entry that will make

the column dominant with the 1,2 element zero. However, Fig. 9 shows that there are

no such triangles in the 1,2 entry; so, if a function is fit to the shape of the

solid circles of this plot and if the 3,2 entry is kept at zero, dominance can be

achieved. Figs. ii and 12 are the CAP_IAD plots for the third column. The 1,3 en-

try is all triangles and the 2,3 entry has triangles at lower frequencies. Thus,

there is no way to make this column of the system dominant with one of the off-
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Fig. ii. G(s)*KI, 1,3 Entry Flg. 12. G(s)*K I, 2,3 Entry

diagonal entries in the compensator zero.

Figs. 13 and 14 are the plots for the third column using the full gradient rather

than the standard analysis. The solid circles which appear at high frequencies in

Fig. 14 are very important. Recall that the circle will only be drawn if dominance

can be achieved while the other entry is zero. This means that by staying inside

these solid circles, dominance can be achieved at the frequencies at which they

occur while the 1,3 entry in the compensator is zero. Thus, in designing the 2,3

i
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' :4 ,In

6
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dI,

Fig. 13. G(s)*K I, 1,3 Entry (Gradient) Flg. 14.

?4
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entry, the stratcgy that is employed is to follow the triangles at low frequencies

and stay inside the solid circles at the higher frequencies. If this is done, the

design of the 1,3 entry will be simplified because it will only be necessary to fit

the entry to the low frequency triangles and have the function go to zero at higher

frequencies.

Utilizing this strategy, a lag compensator was designed to fit the 2,3 entry as

described previously, The compensator entry that was chosen is

-129.4s -1940.2

k23(s) = .0365s + i. "

At the same time, another lag compensator is fit to the solid circles in Fig. 9,

the CARDIAD plot for the 1,2 entry. This was chosen to be

.0127

kl2_SJt_ = .i162s + i.

Defining this compensator as K2(s) with all the other off-diagonal entries zero, the

overall compensation thus far is K3(s) = KiK2(s).

0 i -129.4s - 1940.2
.0365s + 1

K3(s ) = 0 i

.0127 0
.i162s + i.

Figs. 15-20 are the CARDIAD plots of G(s)K3(s) using the standard dominance analysis.
The plots show that the first two columns of the system are dominant at all frequen-

cies since in Figs. 15-18 the origin of each plot is contained by all solid circles

and excluded by all dashed circles. Fig. 19 shows that the strategy applied in the

design for the 2,3 entry was successful. To make the third column dominant, it is

now only necessary to fit a compensator to the shape of the solid circles in Fig. 19

Flg. 15. G(s)*K3(s), 2,1 Entry
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and have it go to zero at higher frequencies. The function that was chosen is
.532s + 16.917

kl3(S) = •0127s2 + .1986s + i.

The only change this has on the overall compensator is that the zero in the 3,3

entry is replaced by this function. _en the third column is replotted using this

compensator and standard dominance analysis, Figs. 21 and 22, the CA_I_ plots

show that the third column is now dominant at all frequencies. Thus, the system is

now dominant at all frequencies.

G(s)*K3(s), 1,2 Entry Fig. 18. G(s)*K3(s) , 3,2 Entry

Fig. 19. G(s)*K3(s), 1,3 Entry
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6. CONCLUSIONS

The graphical CARDIADmethod described in this paper has been effective on the Theme
Problem. The authors' experience indicates that it is an easily learned design aid
which can be quite helpful in achieving dominance for realistic plants. A special
advantage of the CARDIADapproach lies in the way in which it provides insight to
the designer. The plots indicate whether or not it will be possible to achieve
dominancewith simple, lead-lag compensators. Examples up to this time suggest that,
over the useful bandwidth, simple compensators are often successful in this regard.

It should be noted that this paper illustrates only compensator selection for domi-
nance. Completion of the design is by classical means. For an example, see [5].
Of particular note is the fact that compensator denominators having right half plane
zeros do not necessarily lead to unstable controllers. This may also be seen in [5].

Continued research on this class of graphical, interactive methods is in progress.
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ABSTRACT

This paper re-examines the use of transfer functions for linear multivariable

synthesis. Traditionally offering high intuitiveappeal, as well as enhanced designer

insightand involvement in the synthesis process, transfer functions now appear to

present a nontrivial alternative to the state variable oriented algebraic methodologiea

A great deal of their usefulness stems from a unique synthesis equation and the

classical feature of approximate cancellation, a convenience as yet not fullyprovided

in a computational sense by highly precise modern algebraic techniques.

: INTRODUCTION

The concept of transfer function has been a workhorse of engineering technique.

Nonetheless, about the mid-century, the transfer function idea began to encounter

difficulties as designers created matrices of them by transforming entire systems

of differential equations. Practical computation with transfer function matrices

was not an easy issue to resolve at that time, and still remains as a lesser chal-

lenge today. The question of how to extend performance specifications to matrices

of transfer functions posed yet another riddle, the intricacies of which have only

recently begun to come to light with new definitions of the zeros of multivariable

systems [1, .2, S].

Accordingly, it is hardly surprising that the advent of the state variable point of

view, together with the methods of optimal control, so profoundly affected the sub-

sequent course of multivariable control. The beginnings of the digital era and

numerical integ-ration advances provided a computational alternative; and the idea

of a performance index avoided the specification difficulties. Most influential on

linear control systems have been the quadratic regulator ideas, which for the engine

control problem have been applied by various investigators [4, 5, 6, 7] . But

these methods generally provide relatively little insight to the designer on the

physical and dynamical characteristics of the plant and feedback control system.

This paper is about multivariable transfer function synthesis. The philosophy and

viewpoint adopted is that the control engineer is an essential part of the design

process and a synthesis technique should illuminate for the designer key relation-

ships and characteristics of both plant and controller. The synthesis procedure is

based on a matrix design equation which reflects the simple notion that a controller

is a function of the given plant and the desired performance.
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Significant features of the proposed synthesis method are :

Q

Selection of controlled and output variables

Choice of closed loop structure

Selection of closed loop response

Calculation of the controller

Verification

A primary objective is to maintain physical insight during the design process, so that

the designer may interact with the system in a direct, integrated manner. This work

is offered in the same spirit as that of other investigations [8, 9, 10, 11, 12] which

are making transfer function design more relevant to modern multivariable control

problems.

TRANSFER FUNCTION DESIGN

In tills section we review the algebraic aspects of the transfer function design problem

and point out the current relevance of certain aspects of classical approximate calcula-

tion. It is assumed that a controllable and observable state variable description

( Ap, Bp, Cp, Dp ) is given for the plant, which then has an essentially equivalent
description by its transfer function matrix P(s). Also, it is required that the plant be

output regulatable [13] for all appropriate sensed and output variables. Briefly,

output regulatability requires that any desired steady state output can be achieved _vith

a bounded control. Moreover, for an output regulatable plant, appropriate inverses

exist and complete output regulation including noninteractive control is possible.

Selection of closed loop structure and specification of a closed loop response matrix

T(s) then typically lead to a design equation of the type

f(P, G) = T (1)

where G(s) is the matrix of a part of the controller to be designed. Algebraically, it

is frequently possible and highly desirable to convert (1) to the more tractable form

GIG = (2)

G i =fi(P,T), i =1, 2 (s)

which also reflects the intuitive notion that a controller is determined by functions of

the plant and specified response.

The idea of transfer function design by solution of (1) is not new. It was under

intensive investigation about twenty years ago when techniques of optimal control began

to hold sway [14, 15, 16, 17]. A very interesting historical note is that those early

investigations were also motivated by jet en_ne control [18, 19] . At that time, there

were substantial difficulties associated with computation, specification, and the under-

standing of loop stability. These are no longer so formidable.
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Theoretically, the solution of (2) can proceed in one of basically two ways. First,

regard (2) as a linear equation over R(s), the field of rational functions in s with

coefficients in the real number field R, and find particular and complementary

solutions. In floating point arithmetic, this method suffers from undesirable degree

growth. It can be accomplished, however, with exact rational soft, rares. Second,

"clear denominators" in (2) and regard the problem as one of polynomials. This e.'m

be accomplished conceptually within the context of free R[s]- modules, ,,'here R Is]

is the principal ideal domain ring of polynomials in s with coefficients in R. At

present, the free modular approach appears to offer advantages when dealing with

issues such as the realizability, stability, or minimality of G(s). We assume the

reader to be familiar wJ th the first method. For an introduction to the second, see

[20, 213 .

Studies of the solution of (2) by the second method on a turbofan engine illustration

have been made [22]. Computationally, these show that existing exact rational

softwares can solve the problem successfully, but not with _/ccepmble cpu time. Thus

the'exact rational approach must await hardware advances. Moreover, while

documenting these facts, the exact rational approach demonstrated numerical in-

efficiencies both in computation time and degree growth for a key reduction algorithm

found in the literature. Thus theoretical improvements appear warranted as well.

These observations, together with the fact that model numbers are only approximately

rational, argue for floating point numerical arithmetic. The same studies indicate

greatly improved cpu time, but difficulties with numerical stability for floating point

implementations of the second method. It seems likely, however, that some of the

obstacles can be at least partially overcome in the near term by means of the

application of more sophisticated theoretical and numerical technique, as for example

the singular value decompositions.

A great deal of the numerical challenge which occurs in the application of modern

algebraic technique is the result of its paying too much attention to detail. It has as

yet no convenient way to make the observation that

_(I.I s + 1 ) _- 1

(2 s+ I) (s+ 1) 2s+1 (4)

In view of this, the present paper re-examines the first method for solving (2), with

a format that makes a step (4) accessible.

MULTIVARIABLE CONTROL SYNTHESIS

The basic design idea of the paper is easy to understand. Consider Figure 1, which is

a block diagram for a unity negative feedback servomechanism problem with no

disturbances. References, error, plant input, and plant output are designated

r, e, u, and y respectively.
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G(s) P(s)

Fig. 1. Elementary Servo Mechanism

The plant P(s} and the controller G(s) have been introduced in the preceding section.

It is desired to design G{s) so that a response T(s) indicated in Figure 2 is achieved.

y
w

Fig. 2. Desired Response

This is, of course, a version of the problem (1) with

-1
f(P,G) = (I+PG) PG (5)

For a servomechanism problem, there are numerous ways to argue that T(s) must

have full'column rank over R(s). A simple way to do this is to consider a class of

reference inputs, such as steps. By partial fraction expansion of the output y result-

ing from an arbitrary reference step, it is easy to see that T(0) must have full

column rank over R, for other_.se nonzero references could lead to zero responses.

But this implies that the colunms of T(s) are indeed linearly independent over R(s),

as desired. From (1) and (5), moreover, it follows that P(s) G(s) must have the

same column rank property, as well as being square. When the plant has equal

numbers of inputs and outputs, this requires in turn that P(s) have an inverse and

that G(s) be uniquely given by

-1 -1
G = P T (I -T ) (6)

For convenience, define a matrix

-1
Q=T(I-T) (7)

and name it the performance matrix. Note that the performance matrix Q has the

same deeoupling properties (diagonal, block-diagonal, triangular, etc. ) as the

response matrix T. It also accurately portrays fl_e usual servoinduced constraints

on loop dynamics. For example, ff

til(s) = i/(rs + I) (8)
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then

_i(s) = I/(_'s ),

i. e., asymptotic tracking of a step requires an integrator.

of this observation are many in number. For example, if

-1
T=ND

(9)

Obvious generalizations

(IO)

is a coprime polynomial matrix factorization of the response T(s), then

-1
Q =N(D- N) , (II)

so that T(s) and Q(s) have the same "numerator dynamics", as indicated by the

polynomial matrix N(s). This well known classical response limitation can be very

important in turbofan engine models, where the thrust and high turbine inlet tempera-

ture responses of linearized models often involve right-half plane zeros.

In terms of the performance matrix, (6) becomes

G = p-1Q (12)

This relationship is considered a synthesis equation for controllers G(s) under the

unity feedback structure of Figure 1. Though some wisdom is useful in specifying 1

T(s), (12) shows that controller design primarily focuses upon the properties of P (s)

and how they interact with Q(s). 1 This has implications for control synthesis. Note
also that an unstable inverse P- (s) in (12) need not result in an unstable controller

G(s) ff the performance matrix Q(s) takes due account of the non-minimum phase

nature of the plant. Neither need it result in an unstable loop, as shown shortly.

More General System Representation

Plant dynamics define the characteristics of the primary devices, machines or
structures which are to be controlled, as for example, a jet engine, automotive engine

or nuclear reactor. However, to effect control of a plant, it is necessary to use

actuators to drive inputs and to use sensors to track and measure outputs. Moreover,

sensors and actuators usually impose significant dynamic effects into the signal paths

of the basic plant.

Now assume that diagonal actuator and sensor matrices A(s) and S(s) are introduced

into the problem of Figure 1, and add a feedback matrix H(s). This leads to Figure 3,

in which the output y is still assumed to be completely sensed. The real servo error,

of course, is y - r; but ff we assume that H(s) compensates primarily for S(s), then

an approximate error is _' as indicated. The plant input request u r and sensed out-

puts Ys are also shown.
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CONTROLLER PLANT
I

I

U"
"'I

_ . |

Fig. 3. Generalized Servomechanism

In this more general case,

-1
f(P,G) = (I + PAGHS ) PAG, (13)

and a performance matrix

-1
Q =T(I- HST) (14)

is easily identified. The design equation (12) becomes

1QG =A'Ip - (15)

for Q as in (14). This is a synthesis equation for systems as depicted in Figure 3.

CONTROLLING INACCESSIBLE OUTPUTS WITH MEASURED VARIABLES

It often occurs in practice that outputs of interest sometimes are not sensed. In such

circumstance, the control of desired, but inaccessible, outputs is obtained indirectly

using known, inherent plant coupling. For example, two gas turbine output variables

of paramount importance which are not sensed, and thus not available for direct

feedback, are turbine inlettemperature and thrust. These outputs are usually

inferred by control of sensed parameters such as rotor speeds and turbine outlet

temperature.

If plant outputs differ from the variables which are sensed, then plant dynamics may be

modelled in a system block diagram as shown in Figure 4.

Fig. 4. Extension to Non-sensed Outputs
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Observe that the plant transfer matrix is restructured into two matrices to define

the transfer characteristics from the inputs u to the sensed parameters x s

and from x s to the desired outputs y. The transfer matrix Ps is obtained from the

state space description of the plant by defining another output equation, namely

xs = Csx+D su (16)

Technically, it is assumed that (Cs, Ap ) is an observable pair.

matrix Ps is given by

-I
Ps = Cs(SI-Ap) Bp+D s

Thus the transfer

(17)

and P are identical. TheFrom (17) we note that the characteristic equations of Ps

condition that Ps have an inverse is required in application; it is, as it turns out,

a necessary condition to assure total closed loop regulatability. The matrix F(s) is an

added prefilter.

Having defined Ps, it is possible, via the synthesis equation, to design controllers to

achieve prescribed closed loop response Ts between a request vector r' and the

sensed plant variable vector x s . The system in Figure 4 now becomes

_ r' _ T l Xs_s PPs'I

Fig. 5. Overall System

It is desired that the overall response of the system be y = Tr. From Figure 5 it

readily follows, that

T =PP'I Ts F (18)s

For a given plant, P and p-1 in (18) are known and two elements of the system, the

closed loop T s and the pre_ilter F, are available to the designer to shape the overall

response T. On the one hand, if a closed loop response is selected, the prefilter to

obtain an output response T is

F = T_ 1 Ps p-1 T (19)

On the other hand, if a prefilter is selected, the closed loop response which shapes

the output response T is

Ts = Ps p-I T F-I (20)

In this latter case, the performance matrix Qs is determined from T s and the synthesis

equation is applied. Some aspects and utility of these ideas and calculations can be

better judged in the design example later in this paper.
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In this section, we discuss briefly some aspects of the specification problem.

Plant : At the outset it is necessary, of course, to determine ff a plant is capable of

being regulated. Output regulatability [13] conditions guarantee that finite, desired

output time functions can be obtained with bounded input functions. It turns out that

for proport2onal plants, similar to the design example, the existence of appropriate

plant transfer matrix inverses assure complete output regnlatability.

Controller : Consider performance matrix (11) and synthesis equation (12). Write

P(s) in coprime polynomial matrix form Np(S) Dpl(s) and combine the equation to give

G = Dp_l N (D - N )-1 (21)

Stability of G is affected by INpl and I D - N I . The latter determinant is sometimes
forded to have factors with closed right half plane zeros for servo-mechanism purposes.

An example is seen in (8) and (9). Right half plane zeros of INpl , however, represent
definite nonminimum phase limitations which are often incompatible with the combined

requirements of loop stability and tracking. Accordingly, factors of I Npl having
such zeros are usually eliminated from G by appropriate choice of N. In this regard,

it is important to realize that cancellations occurring in (21) do not create hidden

modes, but merely serve as guidelines for controller design.

Loop Stability : In any design, it is necessary to check for loop stability. This is

especially so in servo problems with nonminimum phase plants. Relative to Figure 4,

this can be accomplished perfunctorily with an eigenvalue check on the loop state

matrix A L , or with added insight by a Nyquist interpretation of the equation

IsI -ALl = II+PsAGHSI ]sI-ApsllsI-AAI IsI-AGi IsI-AHIlSI-Asl (22)

where Aa ,a E{P s, A, G, H, S}, is the state matrix associated with the transfer

function matrix a(s). If A a is part of a given description (Aa, Ba, Ca,D a ) for any

part of the loop in Figure 4, then it should be used in (22) whether or not ( A n , B¢_

is controllable and ( C a , A a ) is observable. If only ct(s) is given, however, the

A a used in (22) should correspond to minimal realization of a(s).

Equation (22) assumes the infinite - frequency return ratio to be zero around the loop.

This is appropriate for our example where states are being sensed. Otherwise (22)

would involve an additional constant of proportionality. If we assume plant, actuators,

and sensors to be stable, and H(s) to be stable by choice, then loop stability can

revolve around a Nyquist diagram of the determinant of return difference, with open

loop right-half plane zeros of I sI-AG! properly counted.

Performance : If decoupling is the design choice, it is reasonably easy to conclude

from Nyquist arguments based on (22) that loop stability and transient response will

tend to be robust properties of the control system for small variations in parameters

of A, P, and S in Figure 3. A similar statement could be made for variations in P(s)

relative to asymptotic tracking of, say step references, in Figure 1.
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Moreover, care should be taken to avoid linear designs which attempt superlative

response; this may lead out of the validity re,on of the linear model itself.

ILLUSTRATIVE EXAMPLES

Some aspects of multivariable synthesis _th transfer functions are illustrated by

applying the approach to the theme problem : the F 100 gas turbine engine at sea level,

83 degree power lever conditions. The following features are highlighted :

unique transfer matrix descriptions
model reduction

selection of feedback structure

selection of desired response

shaping of inaccessible output response

verification

Thih section starts with a description of engine model reduction and selection of sensed

and output variables. Next, actuator and sensor dynamics are established. The

response specification of the theme problem is noted. Finally, the design approach

for the illustrative examples is highlighted : choosing the feedback structure,

selection of closed loop response and performance matrix, 3 input- 3 output example,

4 input- 4 output example.

Verification of all controllers was done by a digital time simulation of the system

using step commands. The plant used in the simulation included a 6th order engine

model and complete actuator and sensor dynamics.

The EnBine : The F100 engine theme example is a 16 state, 5 input, 5 output model.,

In addition five actuators are given with quadratic or cubic dynamics and five sensors

are provided, four with first order lags and the fifth with slow quadratic response.

The sixteen eigenvalues of the engine were determined to be approximately : -577,

-175, -58, -51, -48, -39, -21.4 +. 9i, -18.6, -17.8 :e 4.2t, -5.8 _- 5t, -3.8, -2, -. 68.

A reduced order plant was obtained [25] by eliminating all eigenvalues beyond the

frequency range of interest, namely all real parts less than -17.8. This gave a fifth

order model. However since FTIT is a sensed variable, the fast response eigenvalue

of FTIT ( -5I ) was also included. Correspondence of etgenvalues with engine physical
variables was determined. A sixth order reduced engine model was established with

etgenvalues and state variable correspondence as follows :

-. 68

-2.0

-4.06

-5.4 + 4.71

-5.4 - 4.7i

-51

-T41 o, Burner Exit Slow Response (x6)

-T4.51o, Fan Turbine Inlet Slow Response (x5)

-N 2 , Compressor Speed (x2)

N 1, Fan Speed(x 1)
P7 t Augmentor Pressure ( x 3 )

T4.5 hi, Fan Turbine Inlet Fast Response (x 4)

The fan speed and augmentor pressure are coupled by a complex root pair. All of the

sensed variables, except compressor discharge pressure, appear in the reduced
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model. A state description of the reduced engine model is _C=Ap X÷Bpu;y=CpX+DpU;
Xs = CsX

x = (NI' N2' P7' T4.5hi' T4.51o' T41o)

u = ( WFMB, Aj, CIVV, RCVV, BLC )

y = (FN, WFAN, T 4, SMAF, SMHC )

Xs =(NI' N2' P7' FTIT)

and

Fs.,= 3.°, -,o= ,.oo ..,3q y.,o, =
|.Z91 -3.09 -122 .063 .686 15.0_ [.sT7 -z?4"

.ap- 1.087 -•004 -7.41 -•014 -.090 -.070 I _p- ].012 -95.0

|s.83 -z•_7 -591 -50.0 •771 -10.1J I_.sG -_oz

|.z_o -.1o1 -2o.3 -2•oo -1.97 -•449[ _•z94 -31•2

L•O06 -•003 -1.07 .000= •003 -.655j L oos -1•33

- 126

6.97

•535

45.3

2•01

• 080

.13•1

-B4. I

-. 176

59.0

2• 62

• 104

-35745 7

- 20138 /

24T]

41611[

1849|

T2•6J

Cp - .,,, .o3o ,o "':"l I
• 014 .000003 -.011 0 0

• 103 -.064 -17.9 .004 .044 .032 | =
• 00007 .O0000T -.015 .000003 ,00004 .00002 I Cs

•000001 . 00002 . 002 - . 000004 - . 00005 - . 00003 J

0 0 0 0 }]
1 0 0 0

0 1 0 0

0 0 1 1

z_

[" .=35 - z3s a_.3 5.50 -56_5"]

] .0001 .335 .sso - .oooos -.013 I

.130 -22.7 1.31 1.43 1451 I.ooooo3 -.o1_ -.oo6 oooz o43 I
l:.ooooo8 .oo4 -.ooo= -oo5 839j

Actuators : Actuator dynamics are expressed by a separate diagonal transfer

function matrix A(s) such that u = Au r . The vector u is the input vector and u r is the
input request vector.

To save space, dynamic factors of transfer functions shall be represented by a

compact form omitting the usual s and +1 notations as follows :

K (TIs+Z 
s (Ta s+l) (a2 s'2+ aI s+ 1 ) (Tb s+l )

K (TI ) (24)

S(Ta) (a2, al ) (Tb i

The actuator dynamics are specified in the theme problem : A(s): all =1/(. 1) (. 02 ),

322 = 1/(.01 ) (.0007,03), a33 = 1/(.02) (.071) (. 012), a44 = 1/(.00025, 025),

355 = 1/(. 02 ) Bleed control and actuator a55 are not used in the examples. For

design purposes the above actuator dynamics will be approximated by the diagonal
matrix :

A(s) : all = 1/(. 12), a22=i/(.O4),a33 = 1/(. 1), a44 = 1/(.03 ) (25)

Sensors : Sensor dynamics are described in a diagonal matrix S(s)

S(s) : sii = 1/(. 03), 522 = 1/(. 05 ), s33 = 1/(. 05), s44=(2)/(5. 5) (. 6) (26)

These elements define the N1, N2, P7 and FTIT sensors respectively.

120

108



Response Specification : It is required that thc en_ne thrust, FN, and the turbine

inlet temperature, T 4 respond fast _ithout overshoot and that the fan stall margin,

SMAF, and the compressor stall margin, SMttC shall not decrease by more than

• 05 and. 15 respectively. It is also g2ven that the above output variables are not

sensed and therefore, are not available for direct feedback to a controller.

System Design

In the illustrative examples control of the sensed variables is first accomplished.
Decoupled, noninteracting control of the sensed variables is demonstrated. Then

decoupling and control of inaccessible outputs is illustrated.

Feedback Structure : The engine-control system structure used in the examples is

pictured in Figure 4. Essentially, a unity feedback configuration is obtained by

compensating sensor dynamics with the feedback matrix H(s) such that H z S- J-o

Thus, the controller feedback matrix is diagonal :

H(s) : h11=(.03)/(.003), h22 = h33 = (.05)/(.0052, h44=(5.5)(.6)/(2)(.006) (27)

For the 3 input - 3 output example, the first three elements are used.

The Response MatrLx : Closed loop response is selected to produce the following
characteristics :

• stable, essentially first order response
• settle in i second

• decoupled

• zero steady state error

These characteristics suggest a diagonal response matrix of the form tii=l/(. 25)( • ).
The gain of 1 implies no steady state error and the. 25 time constant assures 1

second settling. The parentheses ( • ) indicate other, smaller, acceptable time

constants used to effect realizeability, or smoothing or simplification.

Example 3 input- 3 output

Here we choose to control three sensed engine variables x s = (N1, N2, P7) with

three inputs u = ( WFMB, Aj, CIVV ). First, decoupled response of the sensed
variables is demonstrated. -Then, decoupled response of three inaccessible but

desired outputs X = (FN, T 4, SMAF ) is illustrated. The situation is as pictured
in Figure 4 with HS --- I.

The transfer function matrices of the engine are :

. 10 (. 007)(. 040.. =T)(. 4s)(1.4)
- .20 (.0202(.025..2T)(.502(1.3)

PI ,003 (, 040)(. 04r_)(. 20)(. 50)(1,42

014 (.0002..02)(.242(.$)(1.42

"tO0 (.OZ)(.SO)(-.02 )(.52(L 2)

-6.2 (. 02)(. 20)( . 35) (. 52(I. 5)

-14 (. 02)(. 1202(. 3202(. 52(1. $)'1

5.4 (. 02)(. oo?. -. 01) (. 52("1.3) I
-. lo (.o22(.34o)(-.o'o(._)(l.s).J

(. 02) (. 02,. 21)( 25)(. 02(I. 47)

(28)

F I. I0 (.02)(.006..12) (.21)(.52(1.4)

,, [ .075 (.022(.02..2G) (.34)(.5)(1.5)
L'- 00003(. oo1,. 031(-. 04}(. 212(. 5)( I. 5)

-820(. 0002.. 03D(. 222(. 44)(. 562(I. 6)

132(, OZ )(. 13)(-. 0142(. 312(. 502(1.5)
• 13(.0Z )(-. 0092(. 152(. 2S)(.502(!.52

6.0 (. 02)(. 08)(. 42. 1.04)(.52(1.321
1.3 (. 02)(. 01. -. 05)(. 39)(. 52(1. s)_

-.00_ (.02)(.112(.0.%. 40 )(.52(I.5_J

(29)

(.02) (.02..21)(.252(.502 ( 1.47 )
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p-I

(3.1)
-1 ,. |.ooo7(.o2}(-.c_,_1._,_(z.3)

Pa L -.o4{.o_.)( ._o}t 5o)(1.3)

2.55(. o2)(. 34)(. 5o)(1.5) z35(. _2)(-. ol)(. 5)(t. 0)7

" 0005( ' 0=)(" 2_')'_(" 50)(1" 5"J '' 065(' 02)(' 16){" 50)(1" 3) I (30)
.055(. OOT)(. 2)[. 50)(1.4) -1.16(. 02)(. 03)(. 50)(1.3).J

(. 02) (. 50) (z. 3)

I .74(. 02)(. 18){. 32)(-. 013)(. 50}(1.5)

-. 0003(. 02)(. 09)(. lo, . S3 ) (. 5o)(z. 5}
-. OZ2(. 02_t. ZO}(. 3;.)(-. C09y,. 50)(I. 5)

3.1(. 0005.. 045)(. 15)(. 46)(. ,$8)(1.6_

• 005(. 02)(. 007, . LS} (. 21)(. 50)(1.4)
• 10(. 02)t-o 007)(. 08) (. _.0)(..50){ 1.5)

zs8_)(, o2)(,-.oo"t)(, ze, . ez)(. so)(].. 5)']

• s,_{, o2){. oi )(, 4o)(-. 70 )(. _,o)(z..5) j
-z';'7(.o_')(.oo_._'3)( ._,s )(. 5ol_z. s_j (31)

(.ol';) (.02) (. z'-'5) t. 3) (.s) (.1.5)

From (28) and (29) one obtains the insight that the longest time constants, (i. 47 ) and

(. 5), and shortest time constant (. 02) of the engine are not dynamically significant since

they essentially cancel out of the matrices. Thus the engine is primarily 3rd order.

Moreover, the unique transfer functions indicate the engine gains for every Input-output

pair and the speed of response in each path.

A decoupled, stable response is desired which settles in one second with zero steady

state error. Therefore a diagonal closed loop response matrix T(s) is chosen

tii= 1/(.25) ( • ), for i = 1, 2, 3. With this choice of response matrix, the performance

matrix Q(s) becomes a diagonal matrix qii = 4/s ( • ). An (. 02) factor is included in qii

to assure realizeability; this transmits an additional term of approximately (. 019) to the
denominators of T.

Synthesis equation (15), using actuator dynamics (25), generates controller

' [ .24L02)( .3G)(.55)(3. I)(.12) 11(.02)(.34)(.5)(].°5)_.12) 540(. 02)(o. 01)(. 5)(1. 3_(.12)3
0 " A'IP,,°IQ ,,, |.003(.02)(-.0.s){.50)(1.3){.04) .002(.02)(.29)(.5)(1.5}(.04) -.27(.02)( .16)(.5)(1.3)(.04)|

•L'" ze(.02)(, . 20){. 50)(i. 3)(. 10) .23(. 00'/)(. 20)(. 5)(1.4)(. 10) -4.6(. 02)(. 03)_,. 5)(z. 3)(. zo_j (32)

: S(.02) (.02) (.5) (1.3)

This is an integral controller which produces the desired decoupled response essentially

equal to tii -- 1/(:25 ) (.019 ), with zero steady state error.

Cancellations and approximations indicated by (32) reduce the controller matrix to

]" .241 .sG)t.z_')(s.z)/O..s) zz(.34:,t.z2) _40t-.oz)(.zz)" I
0 - ].oo_(-.o,)(.o,_) .ooz(.zg){.o4) -.27(.z6)(.o4) I

L-.Z6(._o>(.zo) .=3(._o)(.,o) .4.6( .os)(.zo)j (33)

8 (. 02)

Closed loop response transients for step inputs with controller (33) are shown in

Figures 6 and 7. Desired response and decouplIng of the sensed variables are achieved

satisfactorily. Corresponding time responses of the outputs are shown in Figure 8.

To obtain decoupled responses essentially with time constants of. 25, . 33, and. 50 one

may choose tll-- 1/(.25 ) (.02), t22 _ 1/(.33) (.02), t33 --- 1/(.50 ) (.02). For this
choice of T the controller matrix is

. 94 ( . 3G)(./_(3.1)/(I. 3) 8. 0(. 34}(. I _') 2To (-. 01)(. I_)]

.oo3(-. os)(.o4} .oozs(. z_)(. o4) -, z4 (. z(;)(, o4)[

-. z_(. zo)<.zo) . z_. :o_(.zo_ ., _ (. o_)(.zo}j (34)
s(.oz )
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Step responses for the F100 engine _ith controller (34) are shown in Figure 9.

Shaping Output Response : Although satisfactory response of the sensed variables was

achieved, the response of the outputs, particularly temperature T 4 in Figure 8, was
not entirely satisfactory. Equation (19) is now applied to construct a prefilter matrix

to shape the response of the inaccessible output variables to the form tii= 1/(. 25)(. 02),

similar to the closed loop response of the sensed variables.

[ ._(.02)(-.04)b36)(.s)(1.s) _.= (.0004..03)(.19)1.5)(1.4} 3310(.02)(.005)( .371(._1(1.5)'_

F " ]°.009(.02)(.02)(-.3)(.5)(1.5) 2.6 (.02)(.017)(.13)(.$)(1.2) -390(.02)( .02)(-.0S)(.5)(1.5)|

L. OO,_b 02)( .15)(. 33)(. 5_(1. 5) -.03{.03)(.09)(.22)(.5)(1.4) is(.02)( .09..55 )(.5)(1.5)j (35)
(. 017)(.02)(. 13)(. 33)(. 5)(1.5)

Cancellations and simplifying assumptions reduce F to

[ .1_,_ .1_) 2.2 /(.ss) _31o/(.ls_ "_
F _ l-.009 (-.30)/(.13)(.33) 2.6 /(.33) -390(-.0_)/(.13)(.33 )1

L.ooso/(.o=) -o3/(o=) . _e(.2s)/(.n) j (36)

The output responses of the F100 engine to step commands in thrust and temperature

using 'controller G (33) and prefilter F (36) are shown in Figures 10 and 11.

Example 4 input - 4 output

This example proceeds in identical fashion to the preceeding 3 x 3 illustration. The

input vector is u = ( WFMB, Aj, CIVV, RCVV ); the sensed variables are x s = (N 1,

N2 , P7, FTIT) , and the outputs arey = ( FN, T 4, SMAF, SMHC).

Decoupled response of the sensed variables with tii

simplified controller

G iI

1/ (. 25) (. 02) is produced by the

-1.0(-. 29)(. 12) 2.6( . 23)(. 12) 544(-. 11)(. 12) 32(. 22)(. 12)1

.0024(-.53)(.04) .001(.14)(.04) -.2s(.1e)(.04) .004(.02)(.04)|
-.20(.17)(.10) .12(-.02)(.I0) -4.6(.02)(.10) .48(.10) |

-. 01e(-. 04)(. 03) -. lZ(. 3_)(. 03) .04(. 23)t. 03) .44(. 0_)(. 03)j

S (. o9)

(37)

System transients to step references of the sensed variables are shown in Figures 12
and 13.
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To shape the response of the outputs a prefilter matrLx is designed using (19). A

simplified prefilter matrix F is

F . 11(. 30)(-. 04)

|-. o2(.oG)(-.17)
F = l" oo6(. to)( . oo)

L.oo2(.30)_-._z)(.o,_

9. 2{ 13)(. 02) 3276(. 30)( . 02) 2046(. 02)(-. 02) 1

2. 7( Z_)(. 02) 463(. 02)(-. 06) 4_4_(. 02){ . t_)[

-. 03(. 19)(. 13) 18(. 30)(.30) -15(. 07)(-. 10)|

.7_(.13){.3o) 29{.33)(-.oG) -29(.n)t.47)j (38)

(. O2) (. 13) (. _0)

Response of the outputs to step commands with controllers (37) and (38) are shown in

Figure 14 and 15.
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CONCLUSIONS

The authors believe that transfer functions offer a nontrivial, viable alternative for

mult_variable control synthesis.

The transfer function synthesis equation provides a unique, convenient format to the

designer. The equation displays the salient characteristics of a plant to aid in selec-

tion of response, cancellations, approximations and realizeability. The plant inverse

matrix plays a fundamental role in transfer function synthesis; it is the primary matrix

in the controller equation and its existence assures output regulatability.

Some wisdom is useful in specifying desired closed loop response. Superlative response

beyond the range of the plant model should be avoided. For regulatable plants, de-

coupled response is readily achieved, and happily, the diagonal matrix forms sign-

ificantly enhance designer insight.

Verification of the design is recommended. There are two issues here : stability and

final response. Verification of the final response by simulation is recommended to

check the effects of assumptions and simplifications made by the designer. For stable,

open loop plants and controllers, stability is determined by checking for right hand

plane zeroes of the equation I I + PAGHS I = 0. For unstable plants or controllers,

equation (22) is applied.
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CARDIAD DESIGNi .... PROGRESS IN THELFOUN'INPUT/ouTPuT CASE*

R.M. SCHAFER AND M.K. SAIN

Department of Electrical Engineering

University of Notre Dame

Notre Dame, Indiana 46556

I
i

ABSTRACT

The CARDIAD (C_omplex A__cceptabilityRegion for DIAgonal _Dominance) plot

has been shown to be a successful technique for achieving dominance in multi-

variable control systems with 2 and 3 inputs and outputs [i]. This note re-

ports on success in applying the method to a 4 input-output jet engine model.

The CARDIAD plot is a graphical technique which achieves dominance us-

ing only input compensation. The form of the compensator used has l's on

the main diagonal and general complex entries off the diagonal. At a given

frequency, a sufficient condition for dominance in a column of the system

can be expressed as a quadratic function of the system evaluated at the fre-

quency with the off-diagonal entries of the compensator as variables. To

achieve dominance, the function must be made positive.

Two types of analysis are performed on the dominance function. Type 1

analysis maximizes the function assuming all but one of the off-diagonal en-

tries in the compensator are zero. In this approach, it is attempted to

achieve dominance using only one nonzero off-diagonal entry in the compen-

sator. Type 2 analysis finds the gradient of the function, and all off-

diagonal entries in the column are used to achieve dominance.

At each frequency of analysis, a solid circle, a dashed circle, or a

triangle is plotted for each off-diagonal entry of the compensator. A sol-

id circle is drawn when the acceptable choices of the entry lie inside the

circle, and a dashed circle is drawn when the acceptable region is outside

the cirBle. If a triangle is drawn, no value in the entry will achieve dom-

inance at that frequency. The analysis is repeated over a range of frequen-

cies, resulting in a CARDIAD plot.

If no triangles occur in the CARDIAD plot of an entry, that column of

the system can be made dominant by choosing for that entry a function which

ilies inside the solid circles or outside the dashed circles at each frequen-

cy. If there exists a point on the real axis which is inside all solid cir-

cles and outside all dashed circles, constant compensation will achieve dom-

'inance. If no such point exists, the plot indicates the proper choice of

_the function by describing its path through the complex plane. In the case

where all off-diagonal entries contain triangles, and hence no one entry is

able to achieve dominance, all entries must be designed to fit the shape of

the path through the complex plane described by the triangles in the type 2

analysis plots.

CARDIAD is a graphical technique which preserves much of the insight

in the design procedure. The plots readily predict whether constant com-

pensation can be used, what values work if it can, and what the frequency

dependent compensation should look like if constant compensation won't work.

Typical of this case is a plot which has solid circles forming a semi-cir-

cular plot in the complex plane. A function of the form k (s)={_+Ss}/{l+6s}
can be chosen by fitting the function at points on the plo_

*This work was supported by NASA Grant NSG 3048.

I. R.M. Schafer and M.K. Sain, "Input Compensation for Dominance of Turbo-

fan Models", in Alternatives for Linear Multivariable Control, National

Engineering Consortium, 1978, pp. 156-169. I
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ALTERNATIVES FOR JET ENGINE CONTROL*

Michael K. Sain and R. Michael Sehafer**

University of Notre Dame

SUM21_RY

The general purpose of these studies has been to evaluate alternatives to

linear quadratic regulator theory in the linear case and to examine nonlinear

modelling and optimization approaches for global control. Context for the

studies has been set by the DYNGEN digital simulator and by models generated

for various phases of the FI00 Multivariable Control Synthesis Program. With

respect to the linear alternatives, studies have stressed the multivariable

frequency domain. Progress has been made in both the direct algebraic ap-

proach to exact model matching, by means of stimulating work on the basic com-

putational issues, and in the indirect generalized Nyquist approach, with the

development of a new design idea called the CARDIAD method. (The acron}_

stands for _omplex _cceptability Region for DIAgonal Dominance.) With respect

to nonlinear modelling and optimization, the emphasis has been twofold: to

develop analytical nonlinear models of the jet engine and to use these models

in conjunction with techniques of mathematical programming in order to study

global control over non-incremental portions of the flight envelope. A hier-

archy Of models has been developed, with present work focused upon the pos-

sibility of using tensor methods. A number of these models have been used in

time optimal control studies involving DYNGEN.

!

INTRODUCTION

The decade of the 1970s has coincided with the beginning of yet another

round of substantial development in the jet engine industry. A notable factor

involved with this stage of modern engine evolution has been the inevitable

growing interest in better and better performance, which in turn placed more

and more demands upon the application of classical hydromechanical control

technique as the primary base technology for engine design. Fortunately, mile-

stone developments in digital hardware began to offer realistic opportunities

for onboard computation in ways not heretofore possible. The combination of

these two events pointed the way to a concept of increasing the role of elec-

tronics in engine control. In turn, this created a variety of new possibili-

*This work was supported in part by the National Aeronautics and Space Admini-

stration, under Grant NSG-3048.

**It is a pleasure to acknowledge the many hours contributed by our colleague,

Dr. R. Jeffrey Leake, who is no longer associated with this effort.
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ti,'s lot a?plication of r_c_nt thcorics of control design. The FlO0 :.:ultivari-

able ()ontrol Synthesis ProEram (ref. 1) sponsored by the ,National Aeronautics

and Si_ace Admini:;tration, Le'_,'i._; Resenrch Center, and the Air Force Aero-Fro o

pulsion Laboratory, Wright-Patterson Air Force Base, is a major example. In

the linear case, the primary tool employed was linear quadratic regulator (LQR)

theory; in the nonlinear case, optimal control methods were not directly ap-
plied.

The purpose of these studies has been to evaluate alternatives to LQR in

the linear case and to examine nonlinear modelling and optimization for global
control in the nonlinear case.

CONTEXT OF THE STUDIES

Evaluation of various theories for control alternatives has taken place

using linearized models related to the FIO0 Multivariable Control Synthesis

Program and using the DYNGEN digital simulator (ref. 2). DYNGEN has the com-

bined capabilities of GENENG (ref. 3) and GENENG II (ref. &), together with an

added capability for calculating transient performance. The DYNGEN digital

simulation is particularized to a given situation by a process of loading data

for the various maps associated with a given engine. The maps for these stu-

dies have been provided by engineering personnel at Lewis Research Center.

These maps correspond to a hypothetical engine which is not closely identified

with any current engine. But the data do correspond in a broad, general sense

to realistic two spool turbofan engines. The simulation provides for two es-

sential controls, main burner fuel flow and jet exhaust area. Portions of the

envelope which can be used for linear or nonlinear experimentation are a func-

tion of the convergence properties of the DYNGEN algorithm as interfaced with

the given engine data load.

_fULTIVARIABLE FREQUENCY DO_tAIN STUDIES

Modern studies of control in the multivariable frequency domain display

various faces in various contexts. Here it is convenient to classify these as

"direct" or "indirect".

The direct approach can usually be recognized by its attention to achie-

ving completely specified dynamic performance. The idea is classical (refs.

5-6). In fact, some of the earliest attempts to expand the direct approach to

the multi-input, multi-output case involved work with jet engines (refs. 7-8).

As is apparent from reference 7, there is an unfailing tendency to call these

methods algebraic in nature. That _endency persists to this day, when direct

approaches in multivariable applications typically involve solution for com-

pensations described by matrices of transfer functions, with the solutions of-

ten requiring the algebra of modules over rings of polynomials or stable ra-

tional functions.
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The indirect approaches are usually recognizable by their relation to the
classic work of Nyquist. }{ere the key equation is often written in the manner

PcL(s) = IM(s)l PoL(s),

where pc.(s) is the closed loop characteristic polynomial, p^.(s) is the_L UL
open loop characteristic polynomial, M(s) is the matrix return difference,
and l'I denotes determinant. This very fundamental equation permits an es-
sential generalization of the classical Nyquist idea, for peT(s) can be used
to characterize the exponentials involved in closed loop control. Basically,
a Nyquist plot of IM(s) l tends to contain the sametype of information which
proved so useful in classical design. A great deal of the design effort cen-
ters upon the way in which dynamical compensation affects the determinant
which acts on M(s). There are three well recognized ways to study this ef-
fect. These are (I) direct construction of IM(s) I by any of the knownmeth-
ods for determinant calculation; (2) construction of the eigenvalues of M(s)
as a function of s, and use of the idea that the determinant is equal to the
product of its eigenvalues (ref. 9); and (3) design of compensation so that M(s)
is approximately diagonal, with concomitant development of a relation between
the Nyquist plot of IM(s) I and plots of the diagonal elements of M(s), as
in reference i0.

THEDIRECTAPPROACH

With regard to the direct approach, a substantial case study of exact
model mathclng (ref. Ii) has been carried out.

The exact model matching problem can be phrased as follows. Let R(s)
denote the field of rational functions in s and with coefficients from the
real number field R. Further, let VI, V2, and V3 be finite-dimensional
vector spaces over the field R(s). Finally, let

and

G1 : V2 -_ V3

G2 : V1 _ V3

be given linear transformations on one vector space to another.
act model matching problem is to find linear transformations

G : V1 _ V2

of vector spaces, if they exist, such that

In a control problem, G1 and G2

Then the ex-

G1 G = G2.

are functions of the plant, the complete
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closed loop specifications, and the configuration chosen for the controller.
The unknown G embodies the dvna=_icsinvolved in the contro]ler, relativc to
a fixed configuration of control.

The basic plant was a version of the FI00 turbofan engine. Inputs were
jet exhaust area and main burner fuel flow; states were fan inlet temperature,
main burner pressure, fan speed, high compressor speed, and afterburner pres-
sure; and outputs were thrust and high turbine inlet temperature. The linear-
ized model approximated the small signal behavior of these engine variables in
a neighborhood of 47° PLA.

Insofar as the authors are presently aware, this study represents one of
the most elaborate exact model matching studies undertaken to date in the lit-
erature. Moreover, it is entirely in the spirit of the introductory work in
references 7-8.

Technically, the mathematical framework was set up in terms of polynomial
modules. The problem formulation itself has been recorded in reference 12,
where it can serve as a comparison point for future algorithms. The computer
algorithms implemented were those promulgated in the literature at that time
(ref. 13).

These studies established several basic conclusions relative to the direct
method:

C2)

the direct method was of interest in jet engine control

(indeed, had been proposed in industrial studies);

the jet engine control problems typical of the 1970s were

of sufficient size and complexity to overtax the routine

solution procedures being mentioned in the literature at

that time; and

(3) a substantial influx of ideas from the literature on nu-

merical methods would be necessary before the direct

method could be applied for jet engine control.

It is a pleasure to report that these results did indeed lead to the de-

sired influx, so that computations of sufficient accuracy can now be made in

seconds. Efforts involving the direct method are now being directed at the

problem of making convenient specifications.

' l--

q--

7

THE INDIRECT APPROACH

Though some efforts (ref. 14) were directed toward the evaluation of the

eigenvalue approach (ref. 9) to IM(s) l, the major attention under the in-

direct approach classification in these studies was directed toward the idea of

designing dynamical compensation so as to make M(s) approximately diagonal

in a way that would be useful in Nyqulst studies.
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Becauseof the indirect way in which compensation has an effect on IM(s) l,
Nyquist analysis of IM(s) l maybe of little use to the designer for other
than stability determination, for even the simplest systems. In the event that
M(s) is diagonal, design and stability considerations are reduced to a set of
single input, single output problems, with net angular behavior of IM(s) l be-
ing a consequenceof summingthe individual net behaviors of the diagonal en-
tries.

Rosenbrock (ref. I0) has introduced the idea of diagonal dominance, which
can be regarded as an approximate form of diagonality. An mxm matrix Z(s)
over R(s) is said to be diagonally column dominant if for all s e D the
Nyquist contour and for i = 1,2,...,m

m

i  i(s)I> [ l%i(s)J
j=l

Rosenbrock shows that, if a matrix M(s) is diagonally column dominant, the

net angular behavior of IM(s) l on D can be inferred from that of {m..(s)}
ii

on D. Thus the class of matrices for which design and stability analysls may

be performed on only the diagonal entries is expanded from diagonal matrices to

matrices which are diagonally dominant.

Efforts in these studies have focused upon methods to design compensation

in order to achieve diagonal dominance.

The procedure which has been developed is called the CARDIAD method, where

the acronym stands for Complex Acceptability Region for DIAgonal Dominance.

The CARDIAD idea can be visualized as follows. Consider a unity negative feed-

back configuration with the mxm plant matrix G(s) preceded by an mxm com-

pensation matrix K(s), both over R(s). Except for renumbering of inputs,

the design of K(s) to achieve diagonal dominance may be restricted to K(s)

matrices having the unit transfer function I in each main diagonal position.

This fact is an easy consequence of Rosenbrock's definition. In the CARDIAD

approach, a sufficient condition for dominance in the ith column of

M(s) = I + G(s)K(s)

say, at a particular frequency s _ D, is expressed by a quadratic inequality

of the type

f.(v) = <v,Av> + <v,b> + c > 0
l

Here v is a vector in the real space R2m-2, consisting of a list of the

real and imaginary parts of the off-diagonal entries in the ith column of

K(s) at the particular frequency s _ D. <','> is the usual inner product,

A is an Hermitian linear map, b _ R 2m-2, and c _ R. A, b, and c are

functions of G(s).

Several different approaches are used to choose v so that fi(v) is
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;_itive. These arc dcscrib_d in detail by references 15-22. References 15-17
deal primarily with engine nodels having two inputs and two outputs; reference
18 focuses on a three input/o_t_ut case; and references _)-8 treat four input/
output situations.

The basic idea of a CARDIADplot is easy to understand in the two input/
output case. The compensation takes a form

l(S) + jyl(s) 1

where for i = 1,2

x. : D-_Ri

Yi : D-_R

are the functions defining the real and imaginary parts of the off-diagonal en-
tries in column i. The quadratic inequality can be set equal to its limiting
value

fi(xi(s),Yi(S)) = 0 ,

which defines a circle on R2 with coordinates (x.,y.). For a particular
. . • 2 • i i .

s _ D, a solzd czrcle ms dra_ on R if (x.,y) pairs Inside the circle
i i 2 • i

satisfy the inequality; and a dashed circle is drawn on R if (x.,y.) pars
outside the circle satisfy the inequality. As s traverses D, t_es_ circles

generate a CARDIAD "plot" on R2. The plot is essentially a set of require-

ments, in graphical form, which are necessary and sufficient for compensator

design to achieve dominance in the configuration described above.

_hen m > 2, various additional strategies are brought into play. These

are described in some detail in the references.

NONLINEAR MODELLING AND OPTIMIZATION

With respect to nonlinear modelling and optimization, the emphasis has
.|

been twofold; to develop analytical nonlinear models of the jet engine deck and
to use these models in conjunction with techniques of mathematical programming

in order to study global control over non-incremental reaches of the flight en-

velope. The context for such studies has been established by DYNGEN, as de-

scribed above.

The first method of modelling which was considered was that of analytical

construction of the equations from the basic physical principles. In this case,

there were sixteen nonlinear differential equations, as well as a large number

of nonlinear static functions which provided additional coupling among the
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equations. Such a procedure then requires determination of parameters in the

equations. A number of these parameters have very definite physical meanings,

and these meanings were supplemented by simulation data when appropriate. Ob-

taining tractable models for the engine in this way, though promising from the

point of view of physical insight, did not lead to very much mathematical in-

sight. Subsequently, therefore, this method gave way to the following.

The second method of modelling placed increased emphasis upon the mathe-

matical structure of the equations, with determination of parameters being done

automatically from simulator data. A highlight of this part of the study was

the development of the model class

= A(x) (x-g(u))

Rn Rp"where x E , u _ The function g is arranged so as to satisfy the set-

point or steady-state features of the engine deck, while the operator

Rn RnA : -_

is useful to adjust the transient behavior of the model. The particulars of

this idea were described in reference 23.

A number of possibilities exist for approaching the approximation of A(x)

and g(u). One additional method and application has been presented in refer-

ence 24.

At this point in time, a new stage in the nonlinear modelling studies is

being initiated. In this phase, extensive use will be made of the methods of

multilinear algebra, specifically the theory of algebraic tensors.

Models of the types evolved in phases one and two have been used in time-

optimal control studies. Results of these efforts have been written down in

references 25-27.

CONCLUDING REMARKS

This brief paper has sketched a number of control alternatives which have

been studied recently in the context of the DYNGEN digital engine simulator and

of linear models deriving from the FI00 Multivariable Control Synthesis Pro-

gram. In the linear case, these studies have focused on alternatives to the

linear quadratic regulator theory employed in that Program. In the nonlinear

case, emphasis has been placed on nonlinear modelling and time-optlmal control.

Principal results reported have been the case study on exact model match-

ing, which has stimulated considerable new work in that problem area, the de-

velopment of the CARDIAD plot as a design tool for generalized Nyqulst work,
and the introduction of a nonlinear model class which is proving to be helpful

in recent engine design studies.
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Pre_nt thrust in this work is to;_'ard the use of _:_L_]tilinear al_ebra for
_;tl_erali_d nonlinL_ar modL,lling.

Finally, the reader may be interested in the fact that the National Eng-
ineering Consortium sponsored an International Forum on Alternatives for Linear
Multivariable Control in Chicago during October 1977. Authors in that meeting
were asked to address a ThemeProblem based upon FI00 data. Two publications
resulted, one a proceedings and one a hardbound book. Reference 23 is to the
proceedings, while reference 18 is to the book. Much additional information
may be found in those volumes.

REFERENCES

i. DeHoff, R.L.; Hall, W. Earl, Jr.; Adams,R.J.; and Gupta, N.K.: FIO0 Mul-
tivariable Control Synthesis Program. AFAPL-TR-77-35, June 1977.

2. Sellers, J.F.; and Daniele, C.J.: DYNGEN-AProgram for Calculating Steady-
State and Transient Performance of Turbojet and Turbofan Engines. NASA
Tl_D-7901, April 1975.

3. Koenig, R.W.; and Fishbach, L.H.: GENENG-AProgram for Calculating Design
and Off-Design Performance for Turbojet and Turbofan Engines. NASATN
D-6552, February 1972.

4. Fishbach, L.H.; and Koenig, R.W.: GENENGII-A Program for Calculating De-
sign and Off-Design Performance of Twoand Three Spool Turbofans with as
Manyas Three Nozzles. NASATN D-6553, February 1972.

5. Truxal, J.G.: Automatic FeedbackControl Systems Synthesis. McGraw-Hill,
1955.

6. Horowitz, I.M.: Synthesis of FeedbackSystems. Academic Press, 1963.

7. Boksenbom,A.S.; and Hood, R.: General Algebraic Method Applied to Control
Analysis of ComplexEngine Types. NACATN 1908, July 1949.

8. Feder, M.S.; and Hood, R.: Analysis for Control Application of Dynamic
Characteristics of a Turbojet Engine with Tail-Pipe Burning. NACATN
2183, September1950.

9. MacFarlane, A.G.J.; and Postlethwaite, I.:
tions and Characteristic Gain Functions.
pp. 265-278.

Characteristic Frequency Func-
Int. J. Control, vol. 26, 1977,

I0. Rosenbrock, H.H.: Computer-AidedControl System Design. Academic Press,
1974.

ii. Gejji, R.R.; and Sain, M.K.: Application of Polynomial Techniques to Mul-
tivarlable Control of Jet Engines. 4th IFAC Symp. Mult. Tech. Syst.,

7-- 136

125



1977, pp. 421-429.

12. Gejji, R.R.; and Sain, M.K.: A Jet Engine Control Problem for Evaluating

Minimal Design Soft_.'are. Hid_.,est S_nnp. Circuits & Syst., August 1976,
pp. 238-243.

13. Gejji, R.R.: A Computer Program to Find the Kernel of a Polynomial Opera-

tor. 14th Allerton Conf., September 1976, pp. 1091-1100.

14. Seshadri, V.; and Sain, M.K.: Interaction Studies on a Jet Engine Model

by Characteristic Methodologies. Midwest S_p. Circuits & Syst., August
1976, pp. 232-237.

15. Schafer, R.M.: A Graphical Approach to System Dominance. H.S. Thesis,

Dept. Elec. Eng., Univ. Notre Dame, Hay 1977.

16. Schafer, R.M.; Gejji, R.R.; Hoppner, P.W.; Longenbaker, W.E.; and Sain,

M.K.: Frequency Domain Compensation of a DYNGEN Turbofan Engine Model.
1977 JACC, pp. 1013-1018.

17. Gejji, R.R.; Schafer, R.M.; Sain, H.K.; and Hoppner, P.W.: A Comparison

of Frequency Domain Techniques for Jet Engine Control. Midwest Symp.

Circuits & Syst., August 1977, pp. 680-685.

18. Schafer, R.M.; and Sain, M.K.: Input Compensation for Dominance of Turbo-

fan Models. Alternatives for Linear Multivariable Control (Sain, M.K.;

Peczkowski, J.L.; and Melsa, J.L.; eds.), Nat'l. Eng. Consortium, 1977,
pp. 156-159.

19. Schafer, R.M.; and Sain, M.K.: Some Features of CARDIAD Plots for System

Dominance. 16th IEEE CDC, pp. 801-806.

20. Schafer, R.M.; and Sain, M.K.: CARDIAD Design: Progress in the Four In-

put/Output Case. 16th Allerton Conf., October 1978, p. 567.

21. Schafer, R.M.; and Sain, M.K.: Frequency Dependent Precompensation for

Dominance in a Four Input/Output Theme Problem Model. 1979 JACC, pp.
348-353.

22. Schafer, R.M.; and Sain, M.K.: CARDIAD Approach to System Dominance with

Application to Turbofan Engine Models. 13th Asilomar Conf., November 1979.

23. Leake, R.J.; and Comiskey, J.G.: A Direct Method for Obtaining Nonlinear

Analytical Models of a Jet Engine. NEC Forum on Alternatives for Multi-

variable Control, pp. 203-212.

24. Rock, S.M.; and DeHoff, R.L.: Applications of Multivariable Control to Ad-

vanced Aircraft Turbine Engines. 1979 Propulsion Controls Symposium.

25. Basso, R.; and Leake, R.J.:

timal Jet Engine Control.
661.

Computational Alternatives to Obtain Time-Op-

14th Allerton Conf., September 1976, pp. 652-

137

126



26. Longenbaker, W.E.; and Lcake, [_.J. : Time Optimal Control of a Two-Speel

Turbofan Jet Engine. X.S. Thesis, Univ. ,'_otre Dame, Septemb=r 1977.

27. Comiskey, J.G.: Time Optimal Control of a Jet Engine Using a Quasi-Hermite

Interpolation Model. M.S. Thesis, Univ. Notre Dame, May 1979.

138

127



SYSTEM SIMULATION

Special Considerations in Digital Simulation o! Conlmls Systems, Including NonlinearJtie_ .... ; ................
RODLNI M Ho_e. Umvers,ty of Mucnl_lan Ann ArboL Micn,_an

HARM Hybrid 6 DOF Simulation ...........................................................................
W. A. Hutch=_on. Te=as In._tP.Jme._ls. _)alla$. Telas

Page 330

Page 336

Dynamic Colored Graphics in Power Plant Simulators .......................................................
RoOe_ Was.tb_,_. F'leCtrOn_O Associates. ¢_es_ Long EJtancn. Ne'_ Jersey

Oynamic Simulation of FFG.7 Ship Propulsion Syslem .......................................................
J. H. To_lt and T. M Houhhan. N_val Pos:gra_uate SChool. Monterey, Cahtotn_a

Page 342

Page 344

FURTHER ALTERNATIVES FOR LINEAR MULTIVARIABLE CONTROL

Frequency Dependent Precompensalion for Dominance in • Four Input-Output Theme Problem Model ......... Page 348
EE M, Scrtaler and M K. Sann. UmverS=t¥ ot Notre Dame. Notre Dame. InOlarta

On Hidden Stability Margins in Multivariable Control ........................................................ Page 354
Z. V. Rekal_us. Northv, estern Umve_ty. Evanston. Ilhno,S

S=b_iity and Homotopy II .................................................................................. Page 358
R. Seeks and J. Murray. Texal, T,.eC_ Umve_=tT. LubbOCk. Tezas

Desii_rl of a Turbojet Engine Controller Via Eigenvalue/Eigenvector Assignment: A New Sensitivity Formulation .. Page 359
S. R. L.JI_, R. A. MaynarO and R. R Mletke. Olo Dom,n,on Un,ve,rsd_. Non'ol_.. VlrgJma

Quasi-Triangular Decomposition Applied to the LJnearized Control of a Turbofan Engine--Further Results ...... Page 360
W. F.. Holley am2 W Chung. Oregon C_ate UnaverS_, Corvaihs. Orelzon

Design of Flight Control Systems Via Robust Decoupled Servomechanism Theory ............................. Page 366
5_td'Y-Ho Wan_ University of MaP/_and. Ccde_e Parw. Maryland. anO I: j. Dawson. Univers=_ ot Toronto, Toromo. On.red. Canada

Computer Aided Design of Control Systems Via Optimization ................................................. Page 371
O. Q, Mayne. Imperial Colle_e, Lonaon, England

MultivariableSynthesiswith Inverses .......................................................................Page 375
J. L Peczkowsk_, Bendlx Coroorataon. Sou'._ E_end. Indiana; M K.._,n Umvers_['y of Notre Oame. No:re Dame. Indiana,

,end R. J. Leake. Cahtorma State Umve_'s_ry. Fresno, Ca.tom_a

Failure Accommodation in Gas Turbine Engines with Appiication to Fan Turbine Inlet Temperature Reconstruction Page 381
R. R. Sahg_l arKI R, J. Mdler. Pratt and Wmtney A=rcra_ West Palm _acn, Flor=oa

Model Algorithmic Control: Theoretical Results on Robustness ............................................... Page 387 -
R. K. Mehre. Ram,he Rounam. Sc;entlnC :_vstems. Inc_DorateCi. Cam_,cEe. Massacnu_S: An¢re Rauct. Ader_a/GerDio$, FranCe,

and J. G. Reid. AF Insbtute ol Technolo_'y. Dayton Ohno

An Application of Model-Following Control .................................................................. Page 393
J. O. Aplewcn. Un,vers=ty ol Wa_enoo. Watertoo, 0ntarto. Canada

BIOMEDICAL APPLICATIONS

Syt_ta_i¢ Methods for Human-to-Prosthesis Communication ................................................. Page 399
G. N. Satidis,M. A. Newman. and Saul Geifand. PurOue Unuvet_, "_e_ Lafayetle. Inc_=ana

Dynamic Modeling of Human Locomotion .................................................................. Page 405
R. B, McGhee. S. H. Ko_zei_anan0, F C. Weaner and S. Ranmam, Ohio State Umvemlty, ColumOus, Oh=o

Muitifunctional Upper.Extremity Prosthesis Control Signal Generation Using EMG Signal Processing ............ Page 414
P. C. Ooerschuk, Massagr_u_.._$ Institute ot Tectlnoto_'¥. Camonage. Messact_use_s: 0 E C,us(atson. Sc_en¢_hc Systems. IncorpOrated. Camonoge,

Massachusetts. and A. $. Wdlshy. Massacnuset'Ls Institute of TecnnolOEy, Cambridge, Massacnuse.'ls

P-Wave Detection and Identification Using Statistical Signal Analysis ......................................... Page 420
0. F. Gu_tJIfson and .lyh.Yun Wan_. SQenbfnc Systems, IncnrDorateO. Cambr,dge. MassacnuSeCts

Limb Function Discrimination Performance Using EMG Parameter Identification .............................. Page 426
G/IUPe end Jived S_lat_c llhno_s Jnsbtute of Technoloi_. Ch_r._go. l_mo_s

INSTRUMENTATION AND CONTROL IN ENERGY AND ENVIRONMENTAL SYSTEMS

Infrared Radiometry Applied in Critical Temperature Control ........ ; ....... •...... Page 429
R. F. Llteich. _arnes, [ngmeer0ng Comoany. Stamford. Connecticut

Hierarchical, Distributed Digital Control in the Municipal Wastewater Industry _,
M. J.Flanaran.Flanaganand AssOcmtes.SanFranct!_o.Cahtornta ............. '. • •. •...._., ....... Page 431

Instrumentation for Process Control by Acoustic Techniques in Coal Conversion Plants ........................ Page 437
A. C. Ranis. T, P. Mulcaney. H. B Karplus and P. D ROaCh. ArRonr_, Natnonat LaD(_'atory Argonne. i.nnO=S

MANUFACTURING AND PROCESS CONTROL: ANALYTICAL APPROACHES AND APPLICATIONS

Improving the Usability of Analytical Design Techniques in Industrial Control ................................. Page 443
M. P. kukdl$, _41_y Col'ltrol$ Co_Inoar_. Wirkhrte. Ohio

A Machine Tool Control System for Turning Nonaxisymmetric Surfaces ....................................... Page 4S0
_. Oo_,lglas|. Un_on Caet_Oe Cort.)orahon, Uak R,o=e. Tennessee and W, L Green. Umversdy ol TennesS..=e, Kno=v, lle, Tenne_t,e_

Controlling a Dividing Shear Near the Home Position ........................................................ Page 457
O. B. Lenin. Bethlehem 5reel Cotoorat_on, t,ackawaNta. New York

128
u V



J.L. PeczMowski

RoarED, Controls Division

Bendix Corporation

Sou_h Bend. Indiana 46620

FURTHER ALTERNATIVES FOR LINEAR MULTIVARIASLE CONTROLS

HULTIVARLABLE SYNTHESIS WITH INVERSES

H.K. Saln

Dept. Electrical Engineering

University of Notre Dame

Notre Dame, Indiana 46556

R.J. Leaks

School of Engineering

California State University

Fresno, California 93740

Abstra_:t

In this paper, we illustrate the application of total synthesis (TS) methods to the design of con-

_rol/er dynamics for linear multlvariable models of realistic turbine engine simulations. I"5 methods pro-

vide the designer with a capability to specify thoroughly and directly the nominal dynamic relationship

between command or request variables and controlled or response variables. Under reasonable assumptions,

this capability can include transient response as well as limiting values, and of course internal stability.

We place particular stress upon the ___nverse total s,rnthesis problem (ITSP), which emphasizes the inverse

of the plant input/output relation, expressed typically as a matrix of transfer functions. In numerous

case studies, the ITS approach has shown an ability to preserve designer insight and influence, and has

turned out to be relatively easy to understand--both properties of importance for general control appli-

ca tious.

LmTRODUCTION

In this paper, we consider the design of con-

tzoller dynamics for linear multivariable models of

realistic turbine engine simulations. Our approach

emphasizes the inverse of the plant Input/output

relation, expressed as a matrix of transfer func-

tiO_%S.

Control system design methods in the frequency

_in have traditionally been of two types. In

the case of the first type, the designer does not

progress directly from system performance specif-

Ications to a satisfactory control system. Instead,

the designer works to modify and adjust open loop

characteristics $o that, when the loop is closed,

an "acceptable" system results. In the case of

the second type, the designer does proceed directly

from the outside, closed loop specifications in-

ward to the particular controller involved. A clas-

sical discussion of both methodologies may be read

in Truxal [I]. We shall refer to the second type

of method as a synthesis method.

ZNV_KSE TOTAL SYNTHESIS

Synthesis methods have continued to receive

study over the last quarter century. A brief in-
dication of the main Ideas can be sketched as fol-

.lows. Consider Figure 1, where r denotes re-

quest, u denotes control action, and y denotes

Figure I. A Genecal Control System.

response. Under broad assumptions, there exist

linear operators T : R - Y and H : R _ U, where

R, U, and Y may be understood as g(s)-vector

spaces of finite dimension, such thac

y " Tr , u - Mr.

The plant, in turn, can be understood in terms of

an operator P : U _ Y, such that

y m PU.

For internal stability of the loop in Figure I, it

is clear that M must be stable in the usual sense.

Less immediately obvious but also true is the fact

that M must be realizable as a linear dynamical

system in order for the control system of Figure i

to be realizable around P. The usual synthesis

problem in recent years has been the exact model

matchin_ problem (LIMP), which is pictured in Fig-

ure 2a. In L-"C_, T and P are given (solid

lines) and

R
R

M I I "..7

I _ MI \-.

U >Y U _Y

(a) D_ (b) TSP

Figure 2. Synthesis Problems.

M is to be synthesized (dotted line) so that the

diagram of Figure 2a co_:utes. This paper focuses

upon TSP, the total synthesis problem, in which P

is given, and T and M are to be found so tha_

the diagram of Figure 2b commutes.

_f a tracking requirement is present, as for

example that y should asymptotically track arbi-

trary step requests, then P must be epic. If in

addition it is assumed that the dimensions of U

and ¥ are the same, as would occur if controls

had been preconditioned, then P is moult also;

and we can address the inverse total synthesis prob-

lem (ITSP), which is governed by che synthesis

equatio n

M - p-I T

and which is visualized in Figure 3. ITSP is par-

ticularly convenient as a synthesis tool because 1
the _ltivariable zeros of P are the poles of P- .
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The transfer function matrix of the engine, tu
R_ factored form, is

I "-
M I _ T ITSP

u<
p-I

Figure 3. Inverse Total Synthesis Problem.

The idea is to select M and T so that the XTSP

diagram coe_utes and so that M and T are proper

and stable.

Feedback realizations of M, such as those

indicated in Figures 4 and ii, can be obtained by

performing the mapping T -_ Q, where Q is PC

in Figure 4 and is PAG in Figure II. There are then

counterparts

G - p-i Q , G - A -I p-I q

of the synthesis equation, which we call the control-

ler dynamics design equation. We refer to Q as

the performance matrix.

Though space is limited, we illustrate these

ideas with four examples.

EXAMPLES

A single spool turbojet engine model is used

in the next three examples to illustrate different

aspects of transfer function design: decoupling,

nondecoupling, and right half plane zeros. The

engine model is due to Skira and DeHoff [2]• A

state description of the turbojet is

_-Ax+Bu

y - Cx+ Do,

whe re

A" _i0

I

D = L.46

Ul=

u 2 "

x I "

x 2 "

Yl"

Y2 "

fuel flow rate, PPH

exhaust nozzle area, IN _

rotor speed, RPM

tailpipe pressure, PSI

thrust, LBS

turbine temperature, eR.

Examole I. Decoupled Response. A closed loop con-

troller is desired to decouple the states x. - rotor

speed and x. - tailpipe pressure.' Response specifi-

cations require zero steady state error to step in-

puts and settling time in one second. Assume that

fast sensors are available to measure the states.

The problem may be pictured by the diagram in Fig-

ure 4 below.

X
#-

Figure 4. Unity Feedback Structure.

Px= (sI-A)-IB "I" 0(.2s+1) .3(.17s+I) 1

2.0 4(- 2Ss+t_l

.is2+.6s+l

l_he plant inverse matrix is

pxl
L_ i0 -50(2.+I 

The plant has no zeros. Thus from P and p-i

is seen that the plant is stable and has no mul__

variable zeros; and it is possible to shape the re-

sponse of the sta_es.

From the response specifications, the response lm

trlx T must produce:

• decoupled closed loop response (diagonal)

• response essentially equal co a.2 second

time constant

• no steady state error (gain-l).

Thus a desired response matrix is assu_ed to be

T" 2 1

•2s+

Note that this simple form of T is consistent w ._

the synthesis equation M - P-IT and the condit_ s

that H be stable and proper• For unity feedback(

Q - T(I-T)-I: thus if T is diagonal, Q is dia-

gonal. _e design equation G - p-IQ now displa

the controller dynamics

G, Px_iQ.12.0(-.25s+l) qll(S) 1.5(.17s+i) q22(_
I0 qll(S) -5.0(.2s+I) q22f_

Since qH=q_=5/s, we immediately obtain the real-

izable, i_te_al controller

=F-lo(--_ss+l)

C(s) i

Computer simulation of the closed loop verifies t_"

result. Figures 5 and 6 show the response of _e

closed loop system for step input requests of 500 .

RPM rotor speed and 5 PSI tail pipe pressure re-

spectively.

Since Q is diagonal when T is diagonal, ic _

easy to alter the time constants of the respoose

by adjusting of the gains in the columns of G(s).

For example, if the desired response iS

then

T(s) = 4 1
P

qli'2.5 and q22=3.33; and
s •

LI0
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Yl_ure 5. System Response to 500 P_PM
Step Request of Rotor Speed.

!

I
G

I
I |

II

t'S
,,, ,.J. am =.m 0.14 O.m O.8e I.._0 i,_ ..lo _.a_ i

TIM(

Figure 6. System Response to 5 PSI Step

Request of Tailpipe Pressure.

Many ocher response and controller possibillcies are
displayed for the designer by the design equation
G - p-iQ.

_xample 2. Nondeeouoled Response. T_Is example
Illustrates that the synthesis method and design
equation are not restricted only to decoupled sys-

tems. Suppose Chat the closed loop state response
of the engine was required by design considerations
Co be

'r- L

Also, assume that a unity feedback structure is de-
sired as in Example 1.

First note that T satisfies the stability and pro-
perness conditions of the synchesls equation M-p'IT.
For unity feedback, _,e again have Q-T(I-T) -1. _he

377

controller dynamics are given by the desiBn equa-

tlon G - Px-IQ

F 200(.2s_I) q(-.2ss+l)z.5(.lTs+z) ._s+zl's(._s+1-(._s+l"
] 'I

c,.,| lo -5(,2s+Z) 0 ..J
where P is taken from Example i. Matrix m%_itiO "
plicatio_ gives

.| •

Courpucer simulation of the closed loop verifies that

the desired response T is achieved. Figure 7 shows
the response of the closed loop to a step request

of 500 RPH rotor speed. Note that the speed res-

ponds Co 300 RPM (gain - .6) with a time constant
of .2 seconds while the pressure response is zero
as required by T. Figure 8 pictures the response
of the system to a 5 PSI step requesc of tailplpe

pressure. The responses match the dynamics CorTes-

pondln_ _o _he second column of T.

_is simple example demonstrates the utility of the

design equation for a nondecoupled case.

II

81

II

,/
a.

II
!I

Fish,re 7. System Response to 500 RPM
Step Request of Rotor Speed.

" 8

, sl

. qla.u a...,u_ _n4 0.18

c - : z z z c -_ -: :

TIN[

Figure 8. System Response to 5 PST Step
Request of Tailpipe Pressure.

_xample 3. Plant rhp Zero. It is desired to con-
trol and Co decouple the outputs of the turbojet
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engine cited above. Response speci(tcactons re-

qulre-zero steady state error and settling time of

1.5 seconds. A unity feedback loop structure Is

desired. Assume that the outputs, yl-th_'ust and

y,-turbine temperature, are sensed ana available

f6r feedback.

"_e problem may be pictured by the unity feedback

structure in FIwure 4 except that the controlled

variables are the outputs y instead of the states

x. The transfer function matrix of the engine is

p,,C (s I.A)_LB+D. F6 (. O006s+l) 7.2(-.25,+I)q ;

t .5,2.<.osssL.5ss+l_ .o18(.17_+1)]
L_ .la ÷ ., _j

and the plan= inverse matrix is

_1 .006(.17s+l) 2.3(-.25_+1) "]

088s2÷,as÷l) I
" -- _-/_ys+l_ -I

The factored forms of P and p-l clearly indi-

cate chat the plant is sLable, has a rhp zero at

s-3.7 and is capable of shaping outputs.

The synthesis equation, M=p-IT, requires that a

decoupled response matrix

[" h

, - [li+l>o('2s+l)

must have the form

°iK 2 (- ° 275+1)

(T3s+l) (T4_+l)

to render M suable and proper. Therefore we choose

I('(r-(-.27s+1) 0 ]T - 3s+l)o'°S'+l) (-._7s+1_ "
L (.3s+1)(.OSs+l)_

Then the performance maCr'/.x is

I=F6z(-zT'*l> oq(a)- e('°o_+l) 1.6z(-.27_1 '
L s(.02s+l) J

and the controller dynamics are given by

01( 17s'l'l

(.02s+l)

7(.29s+l)(.29s+1)

a(i02s+l)

3.70(--. 25s+1_

s (.02s+l) / °

ols.7 !
s (.02s+I) J

Computer simulauion of _he system verifies the de-

coupled, closed loop response. The rhp zero o_ the

plan= appears in the output response as shown in

Figures 9 and i0_" This is an Inherent characteris-

tic of decoupled syscems which Is predicted by the

synthesis equation M - p-IT.

Exa_mle 4. FIO0 Turbofan Engine. An extensive sac
Of llnearscaCe descriptions of the FIO0 turbofan

engine were given by Hiller and Hackney [3]. The

engine is described by the 16th order state models

ac 20 operating points. In ¢hls example a linear

model ac sea level, 67 de_ree power lever condition

is controlled. The desiwn objective is to decouple

and t_ shape the transient response of sensed engine

132

outputs. This exa_ple is given to illustrate a

more realistic design si_uaClon including englna,

actuators and sensors. The use of cancellation

to simplify the controller is also Illustrated.

Figure 9. System Response to 1000 L3

Seep Request of Thrust.

I I

i/
O.N e._ o._ I.III I._ I. dull ] -

T11_£

Figure 10. System Response Co 50"

Step Request of Te=_eraCure.

Four prlmar7 inputs were idenClfled in the engine

model; therefore, the transient responses of four

sensed variables are controlled and shaped. A re-

duced six state engine model [4] is used in the

problem. Because of the complexity of the planc,

i_ was necessary to use machine computation for

thls example. A computer program which handles

transfer matrix computations was available to _ha

authors [5].

The reduced state descrlpclon of the turbofan _tce

is

I .'qTA
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and inputs, u, and sensed out-

11, fan speed, RPH

N2, compressor speed, RPM

P7' augmentor pressure, PSI

_i' fan turbine temperature (fast), °F

TIo , fan turbine temperature (slow), "F

T, burner temperature (slow), 6F

WF, fuel flow, PPH

AJ, e._thaust nozzle area, F_

CI'VV, inlet vane position, DEG

RCVV, compressor vane position, DEC

YI =R I, fan speed, RPM

Y2 = R2" compressor speed, RPM

Y3 m P7' euguentor pressure, PSI

y4 - FIqT, fan turbine inlet temperature, _f.

'_e system problem can be represented by the feed-

back structure shown in Figure ii below.

FURTHER ALTERNATIVES FOR LINEAR MULTIVARIASLE CONTROLS

I 0 0
"05s+l

A 1

i
0 -- 0

• 2a+l

I
0 0

•is+I

0 0 0

and the sensor dyuamics are defined by
vhere

m

I

.02s+l

0

$-

0

0

0 0

0

0

0

1

.ls+l

Ys =S Y

0

1
0 0

.0 2s+l

1
0 0

•02s+l

0 0

The transfer matrix of the engine is

and is shown in Figure 12. The plant inverse

matrix is shown in Figure 13. In the figures the

abbreviation (Ts+I)-(T) and (a s2-+bs+l)-(a,b)

has been employed for simplicity.

The transfer function matrices P and p-i in

factored form, indicate that the plant is stable,

the plant has two lhp zeros, (although they both

essentially cancel) and that the plant is capable

of shaping the four chosen outputs.

1

.Ss+l

p=C(sI-A)-IB+D

Assume that the transient response specifications

require that the output response, y - Tr, be de-

coupled, settle in one second and have zero steady

state error. Thus T is a diagonal matrix and we

shall choose the elements to have gain = 1 and re-

sponse essentlally equal to a .25 time constant.

The synthesis equation, M=A-Ip-IT, indicates that

the simplest form for the elements of T is I/(.25_*)

where the time constant of the denominator fac-

tot (*) does not siEnlficantly affect _he one sec-

ond settling time. We choose (.01): therefore, the

response ma_rlx is T-dlag 1/(.25)(.01).

_te controller dynamlcs design equation is G=A-Ip-IQ

where Q-T(I-HST) -I. Using the above T, A and S

and chooslng H=I, we find that G, simplified

by cancellations and approximations, _urns out to be

Figure ii. More General Feedback Structure.

_q actuator dynamics are defined by u = AUr,
_ere

i(s) sl

. I@ll. lldM. 021 , @024-. l?)(. O_) -. 444.1_4. 02) . _)4C. 01)l. 0Z_l. _)/t. iS) I.1_. Z4)|. t_ •t_4*.01%{, t% -t_/. _) . _1(. OIH. I){. $_/1. IG_ "

.01:4.o_|. t_ -. _(.t@;(. _) o._s(-.om(. _ . Iw.om¢. ,)(._)/(. _,_ j

• (,01)

System response using the above controller G and

the given A, P, S and HmI matrices was verified

by CSMP simulation. The dynamic response and de-

coupling is shown in Figures 14 and 15 for a step

request of 4 PS_ P7 augmencor pressure and 50 de-
grees FTIT temperature respectively.
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FIO0 Engine SysC,.m Response Figure I.5. FIO0 Engine Syste',m Respooae to

to 4 PSI Step Request In P7 Pressure. 50 ° Step Request in }'TIT TemI>eratc

CONCLUSIONS

Hultivariable synthesis methods based upon

transfer functions appear _o be feasible and prac-

tical. We have described a particular method to

_his end, based upon total synthesis of response

and controller and stressing the inverse of the

plant input/output relation. The inverse total

synthesis (ITS) approach has been illustrated on

four curblna engine examples, which include models

from second to sixth order. Included have been

coupled and decoupled cases, and even plants which

are non-minlmumphase.
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Abstract

This paper reports on addlt_onal experience in applying the CARDIAD methodology to design of dynamical

input compensation to achieve column dominance for linear multivarlable models of realistic turbine engine

simulations. In particular, the approach has been extended to models having four inputs and four outputs,

and successful compensations have been achieved with an investment of about thirty minutes desk time.

INI_ODUCTION

Control design methods based at least in part

upon the frequency domain viewpoint have had a long

and fruitful history [I], and interest in such ap-

proaches has continued into the present [2]. Gen-

erally speaking, in the more recent multivarlable

frequency domain work, the basic schools of thought

tend to divide into two groups. 2hese groups may

be classified informally as "direct" and "indirect".

The direct approach can usually be recognized

by its attention to achieving a comp]etely spec-

ified dynamic performance. Such ideas have been

discussed from the early days of organized control

study; and a sampling of this thought may be found

in [3,4]. The indirect approach is usually recog-

nizable by its affinity to the classic works of

Nyqulst or Evans, involving, respectively, frequency

response plots in the complex plane or versions of

the root locus. The main focus of many indirect

methods is the equation

Pc(a) = IM(s) l Po (s) ,

where po(s) is the open loop characteristic poly-

nomial, pc(s) is the closed loop characteristic

polynomial, M(s) is the return difference matrix,

and I'I denotes the determinant calculation. It

is a fundamental consequence of this equation that

Nyqulat plots of the determinant of return differ-

ence have an import similar to that of the classi-

cal studies.

Methods discussed in this paper fall naturally

into the "indirect" classification.

COLUMN DOMINANCE

One impediment to the making of a plot of the

determinant of return difference is the loss of In-

sight resulting from the way in which the columns

of the return difference matrix pass through the

alternating multilinear function created by the de-

terminant. Consider Figure i, where G(s) repre-

sents the

Figure I.

plant, in this case a linear model based upon turbo-

fan engine simulations, and K(s) a matrix of pre-

compensating dynamical elements. For this case,

IM(s)[ =]I + G(S) K(s) I,

and the way in which the matrix K(s) in the right

member has influence upon the left member can be

quite complicated.

_en the matrix M(s) is diagonal, of course,

the determinant is equal to the product of its di-

agonal elements; and the winding number of the de-

terminant can be deter_:ined from the winding numbers

of the diagonal elements. A generalization of this

idea is due to Rosenbrock [5]. Using the Gershgorin

theorem, Rosenbrock was able to show that this prop-

erty of the winding number was preserved in very gen-

eral cases when M(s) was not diagonal. To meet the

conditions of Gershgorln, it was necessary to assume

that the complex absolute value of the kth diagonal

element in M(s) was strictly greater than the sum

of the complex absolute values of those elements in

M(s) which were in the kth column but not on the

diagonal. This property was to be maintained for

all complex frequencies on a classical Nyquist con-

tour indented to include _oles of the diagonal ele-

ments on the imaginary axis in the complex plane.

Rosenbrock called this property column dominance.

For cases such as those shown in Figure I, the

determinant of return difference can be expressed as

a ratio of two determinants: one of the closed loop

transfer function matrix and one of the G(s) K(s)

product. Accordingly, there is considerable inter-

est attached to the problem of designing K(s) in

such a way that the product G(s) K(s) is column

dominant. This is the fundamental problem considered

in the present paper.

It Is known that g(s) over the field R(s)

can always be factored into the product of elementary

column transformations. Moreover, it is easy to see

by the Gershgorln test that scaling a column has no

effect on column dominance. Thus the interest cen-

ters upon (I) column interchanges and (2) addition

of scalar multiples of one column to another. Of

these, the second can be normalized without loss,

and in many ways seems to capture the essence of de-

sign to achieve dominance.

The CARl)lAD method has been developed for the

purpose of designing this normalized compensation.

The acron)_ stands for _Complex Acceptability RegJon

for DIAgonal D_omlnance. An introduction to the basle

ideas of CARDIAD plots may be found in [6].

In this paper, we discuss an application of

CARDIAD plots to turbofan models having four inputs
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and four outputs.

DI:SICN EXA_Xg'I.E

As described above, the CARDIAD plot is a

(graphical) mt.thod of choosing, the entries of a

preeompensator K(s) such that C(s) K(s) is

column dominant. 'llle compensator is normalized to

having l's on the main diagonal, so that dominance

is achieved in a given column of G(s) K(s) by appro-

priate choice of the off-diagonal entries of the

corresponding column of K(s).

At a specific frequency, a sufficient condi-

tion for dominance can be expressed in a quadratic

inequality of the form:

f(_) . ra_+ rh + c > 0

where A, b, and c are respectively a matrix, a vec-

tor, and a scalar formed by evaluation of the plant
transfer function matrix at the frequency being

studied. _ is a vector of the real and imaginary
parts of the off-diagonal entries of a column of the

compensator. Dominance is achieved by choosing

such that f(_) is positive.

Two approaches are used to choose _ such

that f(_) > 0. Since it is desirable t6 achieve
dominance with as simple a compensator as possible,

the gradient of f(_) is _aken with respect to

each entry xi assuming all other entries are zero.

Here x i may be understood as a pair (ri, i i) con-

sistlng of the real and imaginary part of some off-

diagonal compensator entry. This approach, refer-

red to as type I analysis, attempts to achieve dom-

inance in a column using only one off-diagonal en-

try of the compensator. In the event that it is

not possible to achieve dominance with only one off-

diagonal entry, the gradient of f(_) with respect

to all variables is taken. This approach is called

type 2 analysis and utilizes all off-diagonal en-

tries of the compensator to achieve domlranee in a

column.

The CARDIAD plot is a graphical representation

of the results of the gradient analysis. _nsider

type I analysis of a given column, f(O,...0,xi,0..)

is a paraboloid in S-space, and the value found by

the gradient analysis can be a positive maximum, a

negative maximum, a positive minimum, or a nega-

tive minimum. In the positive maximum case, any

value of x i which lies inside the intersection

of f(_) and the complex plane x i will make

f(.,O,xi,O,..) positive; and dominance will be

achieved at the frequency being studied. In the

C._RDIAD plot, this is represented by a solid circle

which is the solution of f(..0,xl,0..)=O , and a

'+' at the value of x i where the gradient van-

Ishes, which is at the center of the circle. In the

case of a negative minimum, all values of x i ly-

ing outside the circle f(...O,xi,O..) = 0 will

make f(..O,xi,O...) positive. In this case, an

'x' is drawn at the value where the gradient van-

ishes and a dashed circle at f(...O,xi,O..) - O.

In the negative maximum case, no value of x i will

achieve dominance; and a 'A' is drawn. In the

positive minimum case, any value of x i will ac-

hieve dominance; in the column at this frequency,

and a 'C]' is drawn.

In type 2 analysis, the center symbols are

drawn at the gradient values, but the center type

and circle type are decided by making a worst case

deviation from the gradient values of all but one

of the entries of _; and then the remaining en-

try is analyzed in a fashion analogous to type 1

analysis.

A CARDIAD plot results when this graphical _ra-

dtent tnfonnatlen is plotted over a range of frequtn-

ties. Figures 4 and 5 are typical CARDIAD plots

and will be used to describe compensator det;tgn.

Figure 4 is a type 1 analysis plot which con-

tains only solid circles. In this case, there

exist constant real val,'es (ri,0) for x i which
lie inside all of the solid circles. Hence, to

achieve dominance in this column at all frequencies,

any such choice of x i will suffice, since

f(..O,xi,O..) will then be positive at all fre-

quencies. In Figure 5, there exists no such con-

stant real value, but a simple first order entry

which as a function of frequency traces the centers

of the circles can be used. Thus, if the CARDIAD

plot indicates that no constant real value will

achieve dominance, the shape of the plot guides the

designer in determining a frequency dependent entry.

The model used in the following design example

is taken from [7]. It is a sixth order, 4-input,

4-output description of a turbofan engine.

As a first step in the design procedure, the

model was compensated with the inverse system eval-

uated at s=O. Figures 2-10 are the type 1 analysis

plots of the first, second, and fourth columns of

the syster_ compensated by G-I(0). The type 1 an-

alysis plots of the third column indicated that

dominance could not be achieved by only one off-di-

agonal entry; so Figures 11-13 are the ty_e 2 an-

alysis plots of the third .olumn with C-_(0) as

a first compensator.

The fourth column of the system was dominant

without further compensation. This can be seen from

the fact that in each plot, Figures 8-10, the origin

is included by all solid circles and excluded by all

dashed circles; and no triangles occur. Hence, an

acceptable choice for any one off-dlagonal entry of

the fourth column of the compensator, assuming that

all other off diagonal entries in the column are

zero, is zero. Thus, no further compensation is

necessary.

The first column of the _stem required cons-

tant compensation in one off-diagonal entry to ach-

leve dominance. Note that in the plot of the 2,1

entry, triangles occur, indicating that no value in

the 2,1 entry will achieve dominance at the fre-

quencies at which these triangles occur. However,

in the 4,1 entry, Figure 4, only solid circles oc-

cur; and the value of -.034 is included by all the

circles. Hence, with the 4,1 entry set at this

value and the other off-dlagonal entries of the com-

pensator zero, dominance is achieved in this column.

The CARDIAD plots of the 3,2 and 4,2 entries,

Figures 6 and 7, each have triangles occurring in

them. Thus, if dominance is to be achieved in this

column using only one off-dlagonal entry, it will

have to be the 1,2 entry, Figure 5. This plot con-

tains only solid circles, but there is no point on

the real axis which lles inside all of them. Hence,

a frequency dependent entry was designed to trace

the centers of the solid circles through the complex

plane. The function chosen was

kl,2(s ) = -112.5s.178s + I "
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"l_lis choice ea._tly achieved dominance in this col-

umn •

_he third column of the model was the most dif-

ficult to dominate. Figures 11-13 are the type 2

analysis of this column. Since type 2 analysis is

necessary, all three off-dia_onal entries must be

designed. 311e simple shape of the centers of the

plots aided in the desi£n. It was possible to de-

sign a first order frequency dependent compensator

for each entry. The three off-diagonal entries in

the third column were chosen to be:

-1.464s

kl,3 (s) .0639s + 1

8.349 E-04 s

k2,3(s) .0639s + I

k4,3(s ) , .I159s.0639s + 1 "

The compensator which results from the above

-I12.5s -1.4637s
0.

.178s + 1 .0639s + 1

8.349E-4s
1. 0.

.0639s + 1

design is:

i.

0.

K(s) =
O. O. I. O.

-.034 0. .l159s I.
.0639s + 1

Figures 14-17 contain one type i analysis plot

frgm each column of the system precompensated with

C-i(0)*K(s). Note that it is possible to t_ll that

the system is now dominant from the fact that in

the type 1 analysls, plot from each column, the or-

Igln lles inside all the solid circles, and only

solid circles occur. Hence, zero is an acceptable

choice for the entry of the compensator shown, and

sl tee type 1 analysis plots are drawn assuming that

all other off-dlagonal entries in the column are

zero, the CARDIAD plots show that identity compen-

sation will achieve dominance.

The overall design procedure took about thirty

minutes of desk time to complete.

REMARKS

The turbofan engine model used in the design

example above was derived from the Theme Problem

[8] associated with the 1977 International Forum

on Alternatives for Linear Multivariable Control,

held in Chicago during October of that year. The

Theme Problem itself is a 16 state, 5 input, 5 out-

put model. In addition, five actuators were as-

sumed, each with quadratic or cubic dynamics: and

five sensors were included, four with first order

delays and the other with a slow second order re-

sponse. A lower order plant was determined by

means of the approach of Welnberg and Adams [9].

_e selection procedure involved elimination of all

eigenvalues having real parts less than -17.8. In

itself, this resulted in a fifth order model. How-

ever, inasmuch as FTIT is a sensed variable, the

fast response elgenvalue -51 was also included.

The resulting state variable correspondence was

taken to be

fan speed

compressor speed

augmentor pressure

fan turbine inlet fast response

fan turbine inlet slow response

burner exit slow response.

Inputs were

main burner fuel flow

nozzle Jet area

inlet guide vane position

high variable stator position

customer compressor bleed flow.

Outputs were

engine net thrust level

total engine airflow

turbine inlet temperature

fan stall margin

compressor stall margin.

The four input/output model is obtained by deleting

customer compressor bleed flow as an input and total

engine airflow as an output.

CONCI,USIONS

The CARDIAD plot is proving itself to be a use-

ful and insightful design tool for achieving column

dominance by means of dynamic precompensation. Or-

iginally applied to models having two input/output

pairs, the method has progressed to three input/out-

put pairs [6], and, in this paper, has been applied

successfully to the case of four inputs and four

outputs.
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Figure 2. (2,1) Entry; Type 1 AnalySiS.
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CARDZAD APTROAC_ TO SYSTEM _CE

AFFLZCdLTION TO TURBOFAN ENCZ3_Z H_D_*

R. Michael Schafer and l_cba_ E. Sa_

Depar_men_ of YAectric_l Engta_tr_4Z
Uu_vazsi_y of l_oCre Dame

Notre l_me, lnd£ana

USA 46556

One of Clx_ famcura_ of ptI_ant day t_mu_ch on

].Inear mulc_v_blo syscmu has been • renewed _-

ut in lqyqu_t mmchods. ]J4m_ u_m tl_ detec_Lmmt of

return dlgfezenca, these methods _sc dsve_op ptoco-

dures which Interface wlth okay symmCrlc, mul_illuear
forms. A mall ]mmm interface has been made by Ito_m-

brock, who used • concept called diagonal domtnanca.

This paper repo_cs on • Sraphlca_, Interactive way Co
ac_ Ohm concept.

Introduction

In ¢aCamt yeazs, lnc_eAstd aCtamttou has been

paid Co the use of frequency _ teclmlqu_ for the

du_n of mn_ciw_r_sble controZ meatus. Hose of

chert Ceclmlquas ara based upon cbe equation

_cC.) - ]_C,)l P0Cs) Cz)

vh_ch r_Zacu cha z_os of cba open loop chara_cz=ls-

tic poly_ p_(s) and the za=os of Cho closed
Zoop charsccLr_sc_c po1_t=.l pc(s) through tl_ de-
cernlnanc of the return dlffexe_e matrix M(s). Given

cbac the za_os of the open loop characc_r_sctc polynom-

ial are knmm, sCab_iCy of the closed loop charsccer-

Isclc polTnm¢1_l can be deter=tried b_ N_4-t m_ys_

of M(s) . Unfortunately. direct Nyqulsc analysis of

MCs) yields lltCle du14_ lns t_hc. There_ora. al-

t_C_ m_mm of sCudy:L_4_ M(s) J have been d_wLud.

lu the Z=vezse Nyqu_C Array app_oa=h dua to

Ros_brock, tha mysc_a is first compensated to achieve
d_aKonal _a. An n x u aaCrlz Z(m) iS said Co

be diary col_m dmutnanc Lf for all • on Cbo

.l_qu:UIt _toU_ D. 8rid I " 1,2,...,n,

I,_c,)l • _ 1,_(,)1. c2)

If ch_s condition 4- NC:i_f:Lod, cb_ mmal net enc_rcle-

senti suds by th_ N_lu_[_t ploC of IM(s) J a=e equal Co
c_m n of Cho umC anclzclamccs msde by Ch_ dl.asc_tl

e=cr_u of M(s). Tlm_, sc_bi1_cy can be deCa=mtned by

Nyqu_a¢ analysts of the d_ssona! an¢¢J_a of M(s).

The _ r_Cc_l_z _eeep_sb_l_ _mgiou for D_A_

Sonal Domlmance) matbod 4. • gra_h_ technique for
act_tavl=S tills _cs cond_C_am.

_IAD He,hod

Cous_le= the systen of FJ4u=e l. Fo= the purposu

of Ch_ papa=, G(s) rep=eNnCs • _-_p_t, _-ouCpuc

model of • turbofan Jec _tne. Z¢ 4. desired Co de-

sign the comp_sacor K(s) su=h cbsc G(s) K(s) 1=
colu=n do=.tnanc. The co=pensacor 4. nor_allzod to

havlnK l's on the _a/n d_oua_, so cb_c dma_nance 1=

achieved Lu • l;:Lvm_ column of G(s) K(s) by appropriate

*Th_ _rk has beem supporce_ in paz_ by the Nacloual

Am=_naut£cs and Space _k_q=£scrsc_ou unde= Crant _SC-

choice of Cha off-d_a|_ emcr£e_ in the co_cMpou-

dtu_ co_ of II:(s).

At • frequency, • _fic_mc condi_tou for do_¢-
mince c_m be ezpresNd in • quadratic tne_cy of cha

form
f(x) = xc*- + xcb + c • 0, C_)

where A, b, _"_ c a=e respeccive£y • _,C=/x, •

vector, and • 8c_1_ for_od by av_u_t_ of cba p_mc

Crsnsfer £uncCt_n macr/z at the f¢_ncy _ studied,
where • is • vector of Ch_ real snd tmas_sr_ pa_s

of the off-d_gom_ sntr£_ of • col"_ of tim compsm-
_to_. and vbsre _pmm_ript t drawees t¢_Ul?Om_.

Dom=nance is scbta_ed by choosing z such chac f(x)

4, pos£tiva.

Sere=a1 approaches are used co choosa x such

that f(x) • 0. Since it is desirable Co achieve dc_t-

nance rich as s:Lmple • compensator as possible, Ch_

L-_dt_nc of f(x) is cakan vtch respect co each *-cry

z£ assu=l_ all ocher _mCrl_s are zero. Re=s, z_
may be understood as • pair (:t,ii) consisting of the
real and Lm_g_sat7 p4LrCS of some off-d_agotm_ compe=-

sacor entry. This approach, referred co as type 1 am-

a_ys_s, aCCe=pCs to achla_e do=tnance /n a col_nun b7

uslns only one nonzero, off-d_gom_ m_C_ for Cb_
column of the compensator. In the event that £C

1=possible to 8chleve do=£uaace with ou_y one nonze=o,

off-dla_oua_ ,m_'7, tM S_adtant of f(x) wtch ::e-

spect to all vo_:Lablos is taken. This approach is rs-
feared Co as type 2 mm.l.ye:Le and ut_11zes all off-d:L_|-
mu_ m_tt_s of the compensator co achtmm dominance 4,,

a coln=n. A third means of cboosln_ the vector x is

used in the av_t that ch_ h_ss_an in cbm c_rpe 2 m_l-

ys_ approach 1= _nd_d_n£ta. It is known that =me 8o-
luC/_n Co making _(s) doLtnant is to compamsa_m wlth

the l_va=so syscm. Tlsss, • solution fc_ tha _ctot
x is co choose the values of tba Ln_e.rH sT_ea &c

chic f=equ-_cy, normslLsed Co 1 on Cho dlagona_ so as
co fit the form of tl_ c_mpm_aCor K(s). In the case

vhe=e cha _sta= is _&Civa de_tn£te, this :Luve=se

s_stas mu_ysLs, known u type 4 s_LTysls, predicts
the mm_ so_Clou as th_ Cype 2 sa_ysls plots.

The CA_DIAD p_t J_ • _aplctca_ reprsNncatton of
tha tempts of tl_ iFtml:Umt 8nalys 4". ConsOle= t_pe I

analys:ts of a glv_m eol, u_n. f(O .... 0,zl,O..) is •

parabolo_d in 3-_pmcs, aad the _a_e found by the cra-

d:l_mt sm_yst_ can be • pos_t£va s_ba=s, • negative

mmt_m, • postt£ve L%_t_m, or • negative m.,t_ua. 7,,
the posit'lye _ cast, any value of z_L which 1_

lns£de Cbs _nCa=mect/_n of f(z) and the complex p_ane

x t v111 maka f(..O,=r_,O,..) posltl_s; and dm[Lmmce
be achieved at the frequ_ 7 be_n_ scud£ed. In

the CAEDIAD plot, thls is repr_sanced by a eolld circle

_ch is the ooZut:Lms of f(..O,zi,O..) " O, and • '+'

at the value of x_ where the gradt_n= vanlshss, which
is at the ceut_ of tl_ c_rcle. In tl_ case of • neg-

at¢ve _t_._m, all valu_ of x T 171n _ oucsLde the
ci¢cle f(...O.zi,O..) - 0 _ aaka f(..O,x_,O...)

posiClve. In this case, an 'x' is d=mm at the value
• _eze cbm Kz_d_t mheo and • dashed c_r_-te at

f(...0,zl,0.. ) - 0. In the nqaCive =zzlmm Cas_, no

VL_Ue of x t _ achieve don_qnance; and • '_' is

d_m. In C_ posltlve _ case, any value of z I
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rill achleve dosLIJumCe; in the col--m at this frequem-

c_, and • 'F1' is dratm.

In tTpea 2 and & anal_nwea, the ce=te_r ._mbolo ace

drawn at the ST•diane values, but the center type and

circle tT_e are decid_ _ .uOU_g • worst case devis-
tiou from the Eradient values of all but one of the In-

•flee of x; and then the r_ainl_ entr7 II analyzed

in a fashion analogous Co tTpe 1 analysis.

A _L_ plot results _ _ graphical sra-

d£ent information is ploCcod •vex • ranse of ftequm_-

ci--. FiSu:u 2 and 3 are tTpinal CAEDL_D plots and

be uNd r.o ducr_bo __t das_gn.

TiSure 2 is • tTpe 1 anal?sis plot vbich contains

onl 7 aoli4 circles. T.n thio case, t_e axilt constant

real valuta (ti,0) for x_ _ch 14" inside s11 of
the solid circles. Ranca, ¢o achieve dominance in this

column at all frequenclea, an7 such choice of z_ will

suffice, since f(..O,z1.0..) will tb-" be posiC_ve aC

frequent:Lea. In Figure 3, thee el•Ca no such

cousCanc _ va_ua, but • 8_mp14 £1z_ oTde_ en_-y

which as a function of fzl_aaucy C_ate_ the centers of
the _so can he umed. T'aus, :L_ the CARDZAD plot 4..

dicates time no co_at_mt tim1 value _ achieve dc_t-

=_nce, the shepe of the plot Euidas the designer £n de-

terming a frequency d_pend,mt enCr 7.

Desist E=m_ple

Tha mode.?, u_d 4. the _ollowing dal:[4p_ e=umple Is

cake= fro= [I]. It is • 84"_h o_dar, _-Input, &-out-

put dea_ript_nu of a _u_bof-" engine.

As a first step :Lu the duisn proc_ute, tl_ model

_s cmapensated etch the £_rv_ae _y_tam evaluated at

8 - O. F_|utu &-8 are t_ t_e 1 mmlysis plots of

the 4,2 entre-y, the 3,4 en_-A-_, --_ _he entl=e f_rst col-

,---. Type I anal_s£8 of tbs f_st colmm Lnd_cacM
Chef doa4"ance cannot be ach4"ved us4"_ only one ton-

zero, off-4_agona.l --Cry. The uzm us true for the

thl:d column. PiSutu 9-11 are tha type 4 mmlysis

plot• for the fLTst co_; _nd FiSuras 12-I_ a_e the

CTP_ 2 analysis plots foe the third col---,.

In both thm second colmm and the fourth colu=n,

do=In•rice m achAevable using cTps 1 s.us.lysis s_l cot-

scott compz=sotion u deactibed in the disc_saion of

FigUre 2. _e _ma achieved in col TM 2 by

chooainZ the _,2 ent=7 co be -880.8. Note tsar oh4"
value li_s wlchln all solAd clx_.les and outside all

dashed cArclas. In ilk• u=ne_, the fourth col--- yes

made domiuant b7 cboesinS ch_ 3,4 -"cry ¢o be -.59.

In the f_l_st and th_d colnmss, £¢ us necuury

Co flc all th_ off-disl_Om_ --Cc_i_s of the comp_m-

sacor co the shepe of tbo c--taz_ of the type 4 and 2

plots, r_q_cttv'_7. In each e_m_, Ncc_d oz_ com-

pen•atOm _ms necessary ¢o fit _deqm_C_y Cl_ •bape_.
The thane mstz'los chosen foe the f:_xst co_ _m_•

_.l(S) - "'1_9_'_s2 " .O_Jgs ,
.2271_2s 2 ÷ .238s + I

-.044s 2 - 2.30_

_,_(s) - .227E-2s 2 + .2388 + 1

.l&6s 2 + 3.568

k4._s) -
.227Z-2s 2 + .2.38s + 1

Tb, tb/rd cohu_ was made do_tmmz ,riCh cbe fo_

three off-¢lis|oaa_ enrolls•

-.175E-_s 2 ÷ .263Y,-2s

_.,_(s) -
.lgsE-2s 2 + .0837s + 1

•333E-5 s2 - .274E-3¢

_,3(I) " .198E-2s 2 + .0837s + 1

-.635E-2s 2 - .0188s

k_"5(8) " .IgSE-2s 2 + .0837• + 1

Zt should be noted Chat, in _P.h case, Che denom-

inator pol_lal of the column is the _, tb_r_

keepin_ the order of the re_ltin_ co_o: mall.

Wlth r._mp_t_ u desc¢ibed above, type 1 am.

_lysis vas r_p_t_l to _y thee d_e _

achie_Pe4. Y_u_ea 15-18 axe • _ I am•lye4" plot

fro_ _ch column. Note tbe.t _ I_'_n"7 cau_, tb4 plot
predicts that an acceptable solution is Cha or_lin.

Since _-ype 1 8=alTar8 4. dx_-" _ _11 othex off-

d.4"_n_ m_tr_ are sa_o, this _zpli_o thee tim cOl-
t.s _L_• nov dmL_Uant, s:Luc• the p_ota pted¢ct Clmt

id--tity cJxtpamsaciou will ach_mvm domtamzce.

DtscmssJ_u

The tools usocistod _lth NTqu_t •salT•is of (1)

are often helpful in the _malylis and desi4_ _- of uulti-

variable sTst--- in the frequ_ doma_. One of the

_mys to approach the design of ]M(s) I _n (1) is b?

sauna of the dominance ideas of _os_k [2].

paper describes a EraphLr-al, Interactlve procedm:e for
atca_J_u_ doaCnance. For other mm_pl_, m [3].
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in• Court•l", in Alternatives for Linear _lCi-

variable Control, M.E. _uLu, JoL. Poczkow_, mad

J.L. l_elsa, e_s., 1978, pp. 138-155.

2. H.R. _mbrock and N. Munro, "The Xnve=m _ist
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ONTHETOYI_ SYNTHESISPROBLEM
OFLiNEaRF_LTIVARII_LE CONTROL

Abstract

by

RaghvendraR. Gejji

New results in the theory of feedback system realizations and stable

algorithms for solving the minimal design problem have provided a fresh

impetus for designing linear multivariable control systems using algebraic

methods for direct synthesis from a specified Closed-Loop Transfer Function

Hatrix (CLXFM). The Total Synthesis Problem (TSP) has been recently

introduced in the literature as an approach which provides for simultaneous

specification of plant output as well as plant input responses.

Introductory applications of TSPto jet engine control have stressed

CLXF>_'sthat are completely decoupled. In such cases, provision for in-

ternal stability leads to the appearance of an}' non-minimum-phase behavior

of the plant explicitly in the closed-loop response. There is therefore

interest in studying the non-decoupled CLXFM'sin greater detail.

This study establishes the algebraic structure behind the basic TSP.

The fundamental mapping of TSP is introduced and a characterization of the

solution set of TSP is given as a rational vector space. It is shown that

solutions that provide for internal stability must lie in a particular subset

which is a free module over a ring of fractions formed from polynomials.

Coefficients are considered as the field of reals in this study. Later,

the utility of a minimal polynomial basis in characterizing the above subset

is described. The problem of subjective criteria in calculation of minimal
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bases is discussed, and a case study which leads to an empirical balancing

rule for countering this problem is presented.

iJi'!,: l

Design is approached as an approximation technique using least squares

methods to select, among the feasible solutions, the nearest neighbor to

a specified target performance. An interesting question arising as a re-

sult is whether control goals may be incorporated in the specified target

performance. An example result on how tracking goals lead to constraints _

on the CLXFM is therefore included. A comprehensive example is included.

A discussion on the issue of internal stability in the error feedback

structure has been included. Here there is special interest when the plant

is unstable.
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ONTHEDESIGNOF DYNAMICALC0_ENSATION

FORDIAGONALDOMINANCE

Abstract

by

R. Michael Schafer

In recent years, increased attention has been given to the use of

frequency domain techniques in the design of multivariable control sys-

tems. One class of methods currently under studyare based on classical

techniques such as those due to Evans and Nyquist. Fundamental to this

class of methods is the relationship of the closed loop characteristic

pol_omial to the open loop characteristic polynomial through the deter-

minant of the return difference matrix.

The Diagonal Dominanceapproach to the multivariable control sys-

tem design problem is based on the classical Nyquist theory. It can be

shown that if the return difference matrix has the property known as

diagonal dominance, stability of the closed loop system can be determined

from knowledge of the open loop characteristic polynomial and Nyquist

analysis of the diagonal entries of the return difference matrix. Hence,

if the system is first compensatedso that the return difference matrix

is diagonally dominant, the multivariable control design problem can be

reduced to a set of single input, single output design problems and

classical techniques may be applied. However, achieving diagonal domi-

nance is not always easily accomplished.

This dissertation presents a graphical, frequency domain approach,

called the CARDIAD(Complex Acceptability Region for DIAgonal Dominance)
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method, to the problem of designing d>mamical compensation to achieve di-

agonal dominance. In the CARDIADmethod, a form of compensator having

l's on the main diagonal and general frequency dependent entries off the

diagonal is assumed. Then a sufficient condition for dominance in a col-

umn of the system is expressed as a quadratic inequality in terms of the

off-diagonal entries in the corresponding column of the compensator and

the entries of the plant transfer function matrix.

Conditions for the existence of a compensator of the assumed form

that achieves dominance are given, and the method is successfully demon-

strated on jet engine models having 2, 3, 4, and 5 inputs and outputs.

ii
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CONTROL DESIGN WITH TRANSFER FUNCTIONS: "j_,'_/)

AN APPLICATION ILLUSTRATION*

Joseph L. Peczkowski
Energy Controls Oivision

Bendix Corporation
South Bend, Indiana 46620

Michael K. Sain

Electrical Engineering Department
University of Notre Dame
Notre Dame, Indiana 46556

Abstract

In reference (I), a transfer function design theory for multivariable control
design has been explained and applied to model data for the J-85 engine at sea
level, 100% speed condition, and for the FlO0 engine at sea level, 67 degree
power lever condition. Two basic relationships were highlighted: a synthesis
equation and a design equation. In this paper, study of the J-85 model data
is extended to include considerations of sensitivity with respect to model data.
It is shown that the same synthesis equation is available for the extended

design study, but that an additional design equation is implied by the use of a
sensitivity specification. The synthesis equation displays all nominal, inter-
nally stable closed loop response possibilities. The design equations realize

explicit forward and feedback controller dynamics. From an application view-
point, the method has the advantage of being straightforward, easy to under-
stand and easy to apply.

I. INTRODUCTION

hlultivariable transfer function control design is

not new. Itwas applied thirty years ago to jet
engine control by Boksenbom, Hood and Feder {2,3)
and was studied in 1957 by Freeman (4,5) and
Kauanagh (6,7). Practical computation with trans-
fer function matrices was a difficult issue at

that time, and the issue of internal stability
was a formidable problem. Also, discussion of
classical transfer function control design tech-
niques for single-input, single-output systems--
_hich is related in spirit to the viewpoint of this

paper--may be found in Truxal (8,pp. 302-310 ).

For purposes of this brief presentation, a design
discussion format has been chosen. Numerous

interesting and more theoretical questions arise
from contexts such as these. Basically, these
resolve into the nominal possibilities for com-

mand/control and command/response pairs of all
types. To accommodate this question the authors

(9) have defined the Total S__yntbesisProblem (TSP)
of linear multivariabTe control as a study of the
abstract module-theoretic kernel (10) associated

with a fundamental homomorphism, defined on a
natural product group describing command/control

* This work was supported in part by the Office
of Naval Research under Contract N00014-79-C-
0475.

L....---- ....... --.................

and command/response pairs. The module nature of

TSP depends upon the particular subring of transfer
functions chosen, as for examp]_ stable transfer
functions or stable and proper transfer functions.
For a more abstract discussion of these ideas, the
reader is referred to (11), which also contains the

results of a more complicated design example.

2. NOTATION AND BACKGROUND (9,12)

Consider Figure i, a block diagram for a multi-
variable feedback structure with no disturbances.

References, error, plant input and plant output

are designated r, e, u and y respectively. Assume

the plant has equal numbers of inputs and outputs,
thus P(s) is a square matrix c_ transfer functions.
This assumption is not nearly as restrictive as one
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i,t[er. The controllm_; ,%(_,) ,3rid tt(s) tire a}so

sq_aare.

The problem is, given plant P(s), to design
control_crs G and H to achie,.o desired, intern-
ally stable, closed loop response T(s) as indi-

cated in Figure 2.

Figure 2. Deszred Response

TO effect control of a plant it is necessary to
use actuators to drive inputs and to use sensors
to measure outputs. Moreover, sensors and actua-
tors can introduce significant dynamical effects
into signal paths of the loop. Therefore A(s)
and S(s) are diagonal actuator and sensor matrices.

The output y is sensed and becomes Ys; the input

request, ur, commands the actuators to produce
the plant input, u.

2.1 A DESIGN EQUATION

From Figure I, the overall response of the loop is

y = ( I + PAGHS )-I PAG r (I)

The desired response is

y = T r (2)

Combining equations (I) and {2) gives controller G

G : A"I p'IT ( I - HST )-i (3)

A performance matrix, which depends on the res-
ponse T and feedback dynamics HS is identified

Q : T ( I - HST )-I (4)

Thus, a design equation for the forward controller

dynamics G(s) becomes

"G - A'Ip'IQ (5)

Equation (5) is named a design equation for the
forward controller. Forward controller dynamics

are detemfined by the characteristics of the
actuated plant inverse, (PA)-I, and the perfor-
mance matrix, Q. The plant inverse transfer func-

tion matrix is a key element in the design equa-.
tion. What about the existence of the plant
inverse? Is this a serious restriction to trans-

fer function design?

2.2 THE PLANT INVERSE

Fortunately, the existence of the plant inverse
turns out to be a very useful property for con-

trol synthesis. The plant inverse establishes
and displays vital plant characteristics needed to
effect successful closed loop control design.

Four system and plant features, essential for
design, are established and ident{fied by the

plant inverse transfer function:

I. meaningful multivariable control (13)

2. plant trackability (14).
3. multivariable plant zeros (15)

4. cancellations and simplifications.

........... ..,, ,FD*_ ,',L_td:.J.; GrJu l,<:I'S_ _,e) Ch!'.O

showr_ [t_,_t Ji the nu:::bcr o_ plant ir;put_ c,nuals
the n._,bers of its outputs and if P(s) -I e,ists,

then nnp h_s both a meanirgful multivariable con-
trol ;_i!ob]oi:1 end necessary and sufficient con-
ditions for existence of a pl_ysically realizable ._
controller that decouples the system.

Leake, et.al.,(l,l) define a step trackable linear
multi',,_riakle plant as one which can asymptoti-
cally _c_!c,,,e any constant steady-state o at_.t
with a _ounded control. It is shown that step
trackability for proper rational continuous square
plants is equivalent to the conditions that:

i. the plant is invertible and
2. it has no multivariable zeros at s=O.

The multivariable zeros of ¢ plant, P(s), are the
poles of the inverse, P(s) "_, Wyman and Sain (15). _
There*ore, multivariable plant zeros are readily
identified from the factored form of the inverse

matrix. _his is important for design, and especi-

ally so when a plant has hidden multivariable
zeros in the right half plane (14).

Thus, existence of the plant inverse assures con-

ditions needed to effect design, namely it pro-
vides essential design information about plant
trackability, about plant multivariable zeros and -
about existence of meaningful and internally stable
closed loop control realizations.

2.3 A SYNTHESIS EQUATION

From the foregoing discussion it is possible to
design forward control dynamics G(s), by applying

design equation (5) to achieve any specified
closed loop output response. Surely some condi-
tions and restrictions on the output response are

needed if internal loop stability is to be assured.
In this section, a synthesis equation is presented

which displays all admissible output response
transfer function matrices for which internally

stable, feedback realizations exist (14).

Consider Figure 3, where r denotes request, u

denotes control action, and y denotes response.
Under broad assumptions, there exist linear opera-

tots T:R-o-Y and M: R-,-U, where R, U, Y may

T%gure 3. A Ge_er_l Control System

be understood as R{s)-vector spaces of finite
dimension such that (g):

y = T r and u : M r (6)

The plant can be understood in terms of an opera-

tor P: U-4.Y, such that

y : P u (7)

Combining equations (6) and (7) obtains the
relationship ........
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_ore ir:';orta_t than (8) is the equation which
results wi,en P is inverted

14 = p'IT (9)

We highlight (9) and call it the synthesis equa-
tion.

Bengtsson (17) proves that internally stable feed-
back realizations of systems depicted by Figure 3
exist if and only if H is proper and stable and
T is stable. Synthesis equation (9) will be used
to choose responses T to guarantee that intern-
ally stable feedback realizations exist. The
design problem is to find specific ones.

The question is will the specific control dynamics
generated by the design equations produce inter-
nally stable feedback systems? The answer is yes
provided that right hand plane cancellations by
elements in the loop are avoided. From the
application point of view, when a specific con-
trol is under design, internal stability would be
easily verified by the usual computer simulations.

The foregoing ideas and use of the synthesis and
design equation are illustrated by example i below.

3. SYSTEM DESIGN-RESPONSE AND SENSITIVITY

So far, multivariable design to achieve closed
loop responses T(s) has been discussed. A synthe-
sis equation, M = p-IT, and a design equation,

G = A-1 p-IQ, have been highlighted. However,
once a closed loop design with the desired res-

ponse is obtained via the design equation and
selected feedback dynamics, one may ask: how good

is the design? Is there a better way to deter-
mine feedback dynamics? How sensitive is the
loop response to parameter variations in the

plant? Is it possible to impose a sensitivity
requirement on the closed loop in addition to the
response requirement and thus effect design of

both response and sensitivity?

3.1 SENSITIVITY SYNTHESIS (19)

The main thrust of this section is to add closed

loop sensitivity specifications for parameter
variations in the plant to the foregoing multi-

variable control synthesis ideas for response.

Earlier, plant dynamics were written as a matrix

of transfer functions P(s). This may have also
been written as

P(s, aI, a2.... an }:P(s,a } (I0)

where the a i represent gains, time constants and
coefficients in the plant transfer functions. The

effect of the parameter vector a on control system

performance is a most basic issue. The famous
work of Bode (18) defined feedback in relation to
its ability to reduce effects of parameter varia-
tions.

Typically there is a nominal parameter vector an
which results in the nominal plant P(s)-P(s,ao)T
In practise, control systems performance is

usually specified at nominal conditions. Consider

tile teedbacK syc, te.: d]a_raln In t lgure

F_.gure 4, Output Feedback System

The output response is yFB (s,a)=TFB(s,a) r where

TFB(s,a):(I + P(s,a) GH)'Ip(s,a,) G (11)

Suppose now we demand that the desired response T

be achieved by the parametrically uncertain plant
at nominal conditions. We impose the requirement

that TFB (s,ao) = T(s). Next, a mechanism is
needed to determine the effect {rfplant parameter
vectors a not equal to the nominal ao upon the

response. Thus a _ ao implies that TFB (s,a) #
T(s).

This question has been handled in the literature
by Cruz and Perkins (19). The Cruz-Perkins idea

is to compare the parametric variation effect on
the response of the feedback system of Figure 4
with a corresponding effect of the same variation

on an open loop system in Figure 5 which demands
that Tuk (s,ao) : T(s). As before, if a # ao,

Figure 5. Open Loop System

TOL (s,a) _ T(s).

When plant parameters are not equal to the nominal
values, as is usually the case, both systems fail

to meet the total synthesis response specification
T(s). This situation produces'_cwo response error

matrices: EOL (s,a)=cTlUL (s,a)-T_s), the open loop
response error and E (s,a) :T L (s,a)-T(s), the
closed loop response error. A remarkable thing is

that there exis_ a comparison sensitivity matrix
(19) relating E_L to Eu"

ECL : S(s,a) EOL (12)

where
S(s,a) :(I + P (s,a) GH) -I (13)

We highlight (13) and refer to S (s,a) as the

comparison sensitivity matrix.

The goal is to arrange the design so that the
closed loop is more acceptab1"e than the open loop.

Then the closed loop feedback configuration is
said to "reduce" parameter sensitivity with re-
spect to the open loop configuration, which is
taken as the reference.

4. MULTIVARIABLE CONTROL DESIGN: RESPONSE AND
SENSITIVITY

Equation (13) provides the link needed to specify
both response and comparison sensitivity perform-
ance requirements simultaneously for multivariable
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design of feedback _ystems. For tk,__ tic,sod 1hop
Syste_l in Figure 6 the following equ_tic, ns now

F_ure 6 Qutpu_ Feedback _;_r,_,,_

apply

T = ( I + PGH )'IPG response matrix (14)

S = ( I + PGH )-i sensitivity matrix (15)

Q = PG performance matrix (16)

Combining equations (14) and (15) obtains another
relationship for the performance matrix:

Q = PG = S'IT (17)

Thus the performance matrix is a function of re-
sponse T and comparison sensitivity S. Using (17)
to solve for G and using in equation (15) to solve
for H gives:

G(s) = p-IS'IT (18)

H(s): T"I ( I- S) (19)

Equations (18) and (19) are highlighted as the
forward and feedback controller dynamics design

equations respectively for the output feedback
structure in Figure 6. They express controller
dynamics in terms of only the response matrix

and comparison sensitivity matrix.

It is interesting to picture the controller
dynamics design equations in a block diagram and
note that the output feedback system in Figure 6
is transformed into a feedback system expressed
only in terms of the response and sensitivity
matrices. Figure 7 clearly shows that where T
and S are specified, in effect,the dynamics of the
forward and feedback paths are specified also.

flare 7. Output Teedbaci System _a Term_ of T L=d S

4.1 THREE BASIC EQUATIONS

In sunTnary,three relationships form the basis for
an approach to multivariable control synthesis and

design with transfer function:

o synthesis equation M=p-IT (13)

o design equation G:p'I_:_-Isll _ (18)o design equation H:T -I - (19)

Use of the basic equations and foregoing ideas are
illustrated by examples of multivariable control
design for a simple turbojet engine.

5. EXAMPLE

First, a unity feedback loop structure is used and
a control design which achieves desired closed

((;0_) y'_)b;icriL,: _b 3hoi,4iI. lit_x[, : CjUlierd! DuL_.u_.

feed_:ack struct'.:re is used and controllers are
desigqed whi,->, t_roduce both desired closed lo_p
response _nd c'_::;,arison sensitivity. "he autr)ors
are hap;y to acknowledge the assistance of Hr.
Abraham Ha of the Bendix Energy Controls Divisio_
for co:_pututions and simulations of the examples.

Example I. For a given multivariable turbojet

engine, design a controller in a unity Feedback
structure so that the response is: i. decoup_ed,
2. settles in one second and 3. attains zero
steady state error. The engine, a GE J-85 turbojet
at sea level 100% speed condition, is defined by
y = P(s) u where:

p(s) = 15.7(.18s +I) 56(.18s +i)]

(.61s + 1) (.1Bs + 1)

and u I : Wf = fuel flow, PPH _

u2 Aj exhaust area, IN Z
Yl = rotor speed, RPM
Y2 T : turbine temperature, OR

This is a multivariable plant with two inputs:
fuel flow and exhaust area and two outputs: rotor
speed and turbine temperature. The problem is
pictured below:

CoNTRoL E1,1G1hlE,

Figuro, 8. Unlty Feedback EnKine Control System

The fi_'st step in the design process is to apply
M = P'_T, to determine admissible responses T.

Recall that for an admissible response, both M and
T must be proper and stable (14). Calculating the

plant inverse and taking a decoupled response
(T diagonal) form, the synthesis equation becomes

M = p-1T = F "093('005s + I)ill 2.75(. iBs + i)t22l
|

L.00B(1.32s + 1)tll -.28(. IBB + 1)t22 J
where tll and t22 are the diagonal elements of T.

It is clear that the matrix M is proper and stable
if the diagonal elements of T are stable and the

order of the denominator is at least one greater
than the order of the numerator. Note the large
range of choices for admissible response which are

available. The simplest possible response form is

taken namely, t11 = t22 = K/(Ts+I).

To meet the other response requirements for I
second settling time and zero steady state error,
the time constant is selected to be .2 seconds and

the gain K = 1. Thus the selected decoupled re-

sponse T is a diagonal matrix where tli = t22 = I/
.2 s + I. For this choice of response, the per-
formance matrix, accordinq to (4), is Q --5/s.
Design equation (5), G=A-Ip-IQ, gives the control-

158



ler dymvr;ic 5.

G = -i47('005s 4-I) 13.75(. tSs + i)l

L04(1.32s + I) -1.4 (.ISs * i)J
8

This is an integral controller, hence zero steady
state error will be achieved. A digital sirT:ula-
tion of the controller and engine showing the
response of the close loop system to a step re-
request in speed of 500 RPH is given in Figure 9.
The desired response and decoupling are achieved
for the nominal plant.

The effect of engine parameter variations ( + 30%

on the gains of Pll and P.22 ) on the step responseis also shown in Figure The unity feedback
system resists parameter variations but the effect
on the step response is noticeable. Can the
sensitivity be improved?

'I

'i '_' +30%____=,=__'--N°minal Plant

!;
• !

\
N

Figure 9. Speed Step: Nominal Plant
& -+30% Parameter Variation

Unity Feedback

/T
..-,c_ Jt

,I

.tl

Since a unity feedback structure was chosen: H:I;
then equation (19) tells that the comparison sen-

sitivity matrix is S = I - T. For the selected
decoupled response, tll = t22 = I/.2 s + i, the
comparison sensitivity is Sll = s22 =.2s/(.2s+1).
A plot of the magnitude of this transfer function
versus frequency is shown at ]eft in Figure 10.

Comparison Sensitivity Characteristics

_o ; I!!'_ _! !
>_--!- .... _....... .T--4----. - : .... . . ,-=-r ....

•
......... .--7.,.-. /-

6 uNITY FIB .2s i../ -_- _--_ _.. / ..-

• / .....

o i':
O.I 1.0 I0

Example 2. Design a multivariable controller for
the turbojet in example I with improved comparison

sensitivity characteristics while maintaining the
same overall sxstem response.

Control Cosign fur both response and comparison
sensitivity is accomplished by applying design
equations (18) arid (19). The comparison sensiti-
vity characteristics of the unity feedback system
S =diag ( .25/.2 s_1 ) shown in Figure 10 nee_ to
be improved. Comparison sensitivity is improved
by a factor of i0 by, in effect, moving t_e curve
to the right say by one decade in frequency. This
results in a sensitivity transfer function _atrix

S = diag (.02s{.O2s + I). Thus the performance
matrix, Q = S- T = diag 50 (.02 s + l)/s(.2s+1).
Hence by equations (18) and (19) forward and feed-
back controller dynamics become:

F4.7(.oos +I) 137.5(.18,÷i1G: (.02s +1) | .4(I.32s + 1) -14 (.18s +1
t.

H:'I'I(I-S) =

8(.2S + I)

E_ i .2s.__._._____21
.02s + 1

Three step responses of the system are shown in
Figure Ii: the nominal system and + 30% variation

of P11 and P22" Essentially no effect on response
is a_scernaD_e This system has an improved para-

meter sensitivity perfo_ance and the desired over-
all response characteristics.

_,i

-ll

/ \
_ ,7 Figure ii. Speed Step: N3minal Plant

:_I/ g & ±30% Parameter Variation

H : (.!s+l)I/(.02s+l)

6. SUFNARY REMARKS

Linear multivariable control synthesis with trans-
fer functions appears to be feasible and practical.
A control design method, based on three fundamental
equations, was described and illustrated.

Transfer function synthesis builds on classical
transfer function concepts; it is easy to under-
stand and contacts modern theory. Features include

direct design of feedback systems to satisfy both
response and comparison sensitivity with considera-
tion of internal stability.

The plant inverse matrix is key in multivariable
transfer function design. Its existence assures

possibilities for plant trackability and decoupling.
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in ijctur_'dform,it indicatesmultivariable
plant .'eros,cancellationsandpotentialper-
for_ancetrade-ofFsto simplify thecontroller.
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ABSTRACT

The idea of a total synthesis for a linear mul-

tivariable control system revolves around the simul-

taneous specification of the dynamical relationships

of command/control and command/response. Though the

practical motivation behind such specifications does

not envision their exact achievement, it is nonethe-

less of interest to determine the way in which dev-

iation from the specifications =akes place as a func-

tion of chan_es in plant parameters. Moreover, should

such deviation be unacceptably large, then procedures

to accommodate =he total svnthesls are desirable.

This _aper initiates a study of the possible use of

ccmDarison sensitivity for such a purpose. A compre-

hensive illustration based upon realistic turbofan

engine data is presented.

I. INTRODUCTION

Suppose that an object to be controlled is rep-

resented by the pair

= ?.x+ Bu, (la)

y = Cx + Du. (Ib)

Here we shall refer to y as the response of the ob-

ject and to u as its control. Suppose also that

control system goals can be expressed in terms of the

dynamical relationship from a request r to the re-

sponse and to the control. If f denotes the ordi-

nary Laplace representation of a suitably smooth

function f : _ _ V for some real vector space V

of finite dimension, then we may visualize these dy-

namical relationships in the manner

9 = T _ , (2b)

for

M : R(s) - U(s) (3a)

and

T : R(s) ° Y(s) (3b)

morphisms of the rational vector spaces predicated

upon flnite-dimenslonal real vector spaces R, U,

Y associated with r, u, and y respectively.

end

For computation and for practical design, an ap-

propriate choice of basis will yield matrices

(M] (_a)

and

[TI (4b)

over R(e), the field of real-coefficient rational

functions; and specification can then be regarded in

terms of the entries in the matrices (4). Relation-

ships of co%'unand/control are embodied in [M], while

those of co--and/response are embodied in [TI.

As we shall see shortly, it would be unwise to

attempt independent specification of [M] and IT],

even in the case of an internally stable object of

control. Momentarily, then, suppose that an accep-

table pair ([M], [T]) has been obtained. A con-

trollew driven by the request r and any measurements

which are available from the object to be controlled

will be said _o achieve a total synthesis if its im-

plementation results in (2) for the specified pair

([M], [T]) and if the resulting loop is internally

stable.

From the practical point of view, it is neither

envisioned nor intended that the controller will ach-

ieve the total s vnthesls exactly. However, the degree

to which the actual controlled system deviates from

specifications when the object to be controlled de-

viates from its assumed description is always a prac-

tical matter. In particular, if these specification

deviations are not acceptable, then the controller

synthesis must be modified accordingly.

In [i] and [2], a synthesis procedure focused

upon diagonal [T] has been discussed in terms of its

relevance to control design issues based upon modern

turbofan enBine data. Subsequently, these studies

were extended tO include the idea of [M] and to il-

lustrate applicability of the notion to controlled ob-

Jects not of minimum phase [3]. As observed in simu-

lations, the designs of [I-3] appeared to display ad-

equate properties of robustness, at least for the ap-

plication under study. Nonetheless, it seems appro-

priate to incorporate into the illustrated procedures

a means of improving robustness. This paper makes a

beginning along such lines, by placlng specifications

upon comparison sensitivity.

II. THE TOTAL SYNTHESIS PROBLb_ (TSP)

The purpose of this section is to provide a hum-
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bet of basic algebraic remarks about the section pre-

ceding, in particular with regard to the question of

simulraneous choice of [HI and [7].

herin by inferring the traditional relationshi_

'? = P _5 (5)

from (1), where

P : U(s) -Y(s) (6)

is the morphlsm of rational vector spaces represented

by

C(sl - A)-IB + D. (7)

Then the three equations (2a), (2b), and (5) combine

to give

r- P_, (8)

where the right member Is traditional composition of

P and M.

An equation of type (8) can also be described in

diagrammatic form. Consider the triangle diagram of

FiBure i. Each side of the =riangle corresponds to

one of rhe depictions (3a), (3b), and (65. Interpre-

tation of Figure 1 may be made as follows. A group

R(s)

M i"

P

U(s) ...... _ Y(s)

Figure i. Diagram of (8).

R(s)

I

I

I

I

I

P

UCs) , ,_ _- Y(s)

Figure 2. EI_P.
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element in R(s) may be passed through T directly

to produce an element in Y(s); or it may be ;asse_

through H Co produce an element in U(s), with

that element then being passed _hrough P to give an

element in Y(s). The assertion of (8), which is in-

tended in Figure l, is that the same element in Y(s)

results in both cases. Then the diagram is said to

commu_e, and is an alternate statement of (85.

In control problems, P is given as the ob3ect

_o be controlled. The classic question from linear

equation theory may then be posed as follows. Given

T and F, determine whether or not there exist so-

lutions M to (8). If such solutions do exist, de-

termlne whether or not they are unique. Finally, iE

they exist and are not u_lque, characterize the col-

lectlon of all solutions, as for example by an affine

space. From the d_agram point of view, the fact that

T and P are given is ordinarily indicated by show-

ing those sides of the triangle with solid arrows.

Correspondingly, the fact that existence and unique-

ness of M are to be determined is usually indicated

by showing its side of the triangle with a dashed ar-

row. This convention has been used in Figure 2.

As a control problem, of course, Figure 2 por-

tends full specification of command/response, with

the controller synthesis indicated by M. Such prob-

lems have generally been included in the literature

of model following; in particular, the problem of

Figure 2 is often called the _xact _odel _atching

Problem (LxtqPb.

The idea o_ the T_otal _ynthesls [roblem (TSP) is

then indicated in Figure 3. Here F is regarded as

given, while both M and T are to be found. If P

is an isomorphism of rational vector spaces, then its

inverse is of type

p-i : Y(s) _ UCs), (9)

a(s)

I

{

I

I

I

I

I

U(s)

\
\

\

\

\

\
\

z(s)

Figure 3. TSP.

and could be indicated in Figure 3 by reversing the

arrow at the bottom of the _riangle. An _nverse TSF

is then obtained, with acronym (ITSP).

Because P (in TSP), or p-I (in _TSP), serves

as a constraint between M and T, it is noC very

reallsclc to regard their specification as two sep-

arate questions. Instead, we can proceed as follows



[3,4]. Denoteby
hom (R(s), U(s)) (lOa)

the rational vector space of (homo) morphisms with do-

_aln R(s) and codomain U(s); and establish a

counterpart notation

hom (RCs), Y(s)). (lOb)

Then define a morphlsm of rational vector spaces

Figure 4.

hom(R(s),U(s))xhom(R(s),Y{s)) _ hom(R(s),Y(s)) (lla)

by the action

(M,T) w PH-_ (llb)

The kernel of the morphism (Ii) can be used to de-

scribe possible TSP designs. An analogous statement

can be made for ITSP.

However, if the rational vector space format is

applied to the indicated kernel study, then i¢ would

often happen in practical problems that internal loop

stability would be difficult or impossible to achieve.

To see this, consider the result of 3engtsson [5].

Here we have space only to sketch the general nature

of the study. Consider Figure 4. The plant is of

the type (1), with D the zero map, and with certain

technical assumptions on the remaining maps. The

controller structure is of quite general type, and

can encompass most of the classical control configur-

ations. For the structure class chosen, it is es-

tablished in [5] that pairs (H,T) in the kernel of

(ll) can be realized along the lines of Figure 4 in

an internally stable uay if and only [M] is a pro-

per matrix and both [HI and [T] are stable ma-

trices, in the usual sense. Of course, because [P]

is a strlctly proper matrix, it follows that IT] is

(strictly) proper as well. For a discussion of one

way to extend [5] to the case of nonzero D, see [6].

According to results such as these, it is appro-

priate to specialize the kernel study of (ii) at

least to the case in which the matrices [HI and

iT] are proper and stable.

Considered as a field, the set of real-coeffi-

cient rational functions B(s) has various subrings.

Among these are both the subring of proper rational

functions and the subring of stable rational functions.

Both of these subrings have interesting algebraic

properties.

The intersection of these two subrings of R(s),

namely the real-coefficient transfer functions which

are both proper and stable, would be a very natural

subring in which to study TSP or ITSP, at least from

the conceptual point of view. Buc the intersection

ring turns out _o be more complicated from the alge-

braic standpoint. Accordingly, it is often desirable

to begin by considering a total synthesis problem over

_he subrinq of stable transfer functions. The issue

of properness can then be addressed by classical means,

though the addition of adequate rolloff.

Adjusted :o be a module kernel problem over the

subring of stable transfer functions, computation of a

kernel basis has become in recent years a more manage-

able problem. For a discussion, see [4,7].

III. USE OF A SENSITIVITY SPECIFICATION

After an acceptable (M,T) pair has been found,

along the lines discussed in the section preceding, we

may then turn our attention to the question of synth-

esizing the controller in such a way that it tends to

maintain the comr_and/response specification T even

when small parameter variations occur in (i). For

this purpose, we wish to consider the idea of compari-

son sensitivity [8,9],

In the use of comparison sensitivity, the compar-

ison is made between open loop and feedback designs

which achieve the same command/response specification

when (i) does not deviate from its assumed or given

form. With more detail, (6) may be regarded as depen-

ding upon a parameter vector a. This can be indicated

by the notation P(n), which for a ¢ R p would ac-

=ually signify a construction

R p _ hom(U(s), Y(s)). (12)

The vector a is assumed _o have a nominal value

correspondln_ to (i). _%en a eguals its nominal

value, then (6) is replaced by

a 0

P0 " P(°0) (13)

in accordance with (12).

Now consider an open loop design to achieve the

specified T. The open loop design is assumed Co be

achieved by series pre-compensatlon corresponding _o a

morphlsm

: R(s) - U(s). (14)

The resulting design relationship is given by

T " P0 _ o (15)

Next, examine a feedback design to achieve the spec'

ified T. A number of configurations are realistic.

For illustration, we choose the followlng. Establish

a real space E _ R, and regard E as the space of

errors. Analogous to steps preceding, develop E in-

to the rational vector space E(s). Then the feedback

design will make use of forward pre-compensatlon

G : E(s) _ U(s) (16)

and parallel reedback compensation

H : Y(s) - R(s), (17)

together with =he connection constraint

• = r - Hy. (18)
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The resulting design relationship ts provided by the

yell known expression

T - (I + PO G H)'Ip 0 C. (19)

'_hen • [s not a , then (15) and (19) will gener-

ally fail to be sa_isfled. Thus,

t # P(o) _ , (20a)

T _ (I+P(a)CH) -I P(a)G. (20b)

In (20a), denote by EOL(_) the difference obtained

by subtracting the left member from the right member.

Similarly, in (2Oh), establish EFB(_). Here the su-

perscripts OL and FS refer respectively to open

loop and feedback situations. Each of these morphisms

is to be understood in the context

hom (R(s), Y(s)). (21)

It has been shown, under minor technical assumptions,

by Cruz and Perkins [8] that there exists a morphism

SCa) : ho_(R(s),rCs))- hom(RCs),rCs)) (ZZ)

relatin_ these two error morphisms in the manner

EFB(a) " S(a) EOL(a). (23)

In fact, the comoarison sensltivitv morDhism S(_)

turns out to be the inverse of return difference, ac-

cording to

S(_) . (i + P(a)GH) "_. (24)

If a partlcular element _ in R(s) is chosen, then

(23) infers a relationship

a?_m l s(a) _9°L. (25)

Horeover, in the time domain, the lef_ member Of (25)

would have a counterpart

ayFB(t), (26a)

while _he rlgh_ member would generate a corresponding

_yOL(t). (26b)

The time vectors (26) can be sized in _he manner

y llAyll dr (n)

using Euclidean norm. Then Cruz and ?erklns have es-

tablished tha_, for superscrlpt (*) denoting the con-

Jugate transpose,

[i] - (S(a))* [S(_)] (28)

positive semidefini_e on the J_ - axis Will lead co

IIAyFBII2d=i IlaY°Ll at (29)
0 0

for all r(t) satisfying

tI

0 Ilrl12 at (3o)

finite and for all finite, non_egative real t I.

These remarks carry the practical implication

that makin_ _he comparison sensitivity matrix [S(a)]

"small" in an appropriate sense will tend to make the

feedback deslqn more effective in coping with changes

in _ than the open loop design.

It should also be noted that the comparison sen-

sitlvlty morphism S(_) in (24) is defined in terms

of P(=) rather than PO. Because P(s) is rarely

assumed to be known precisely, excep_ when s equals

uO, there are practical questions =o be decided in

design. One accepted rule of thumb is to use S(= O)

for the purposes of design. One may then argue that

this will Rive acceptable results for cases in which

s is "close" to _0" Or one may be quite conserva-

tive in the design of S(aO) so as to "counter in ad-

vance" possible larger excursions in s. An example

of such conservative design is given in [i0].

Our approach here is to regard S(u0) as an ad-

dltlonal specification to be used in conjunction wlth

M and T. Then [ii_ it is possible in principle tO

solve for the forward and feedback compensations G

and H by means of basic relationships

G - PO -I S'l(a O) T (31a)

H - T "I (I - S(UO)) , (31b)

under the assumption that PO is an isomorphism. It
should be noted that such a condition on P^ is taken

in practice to be reasonable, in the sense _hat basic

tracking conditions at fixed frequencies imply rank

cons_ralnts on PO"

IV. EXAMPLE

The purpose of this section is to illustrate the

i,corporatlon of a comparison sensitivity specifica-

tlon into the ITSP design procedure. For the illus-

tration, we have chosen the turbofan engine data used

i_ [3]. Relaclve to (1), the matrices of the quad-

ruple (A, B, C, D) are shown in Figure 5, and corres-

pond to a reduced order see level, 67 degree power

lever condition on the FIO0 engine. Figure 6 shows

the control configuration. Actuators are represented

by a diagonal matrix Ad, with nonzero elements

(i/.05s÷i, 1/.2s+l, i/.is+l, i/.ls+l); (32)

and sensors are represented by a diagonal matrix Sm,
with nonzero elements

(I/.02s÷l, I/.02s÷l, i/.02s÷l, i/.bs+l). (33)

For _he co_aand/response specification, [3] chose a

diagonal matrix

[T] - (l/.25s÷l)(I/.01s+l) I. (34)

Working from the ITSP vlewpoinc, design in [3] was

a¢hieved by choosing _ to be the i_entity morphlsm.

To simplify the presentation of [P-_], adopt _he

abbreviations

(as÷l) _ (a) ; (as2+bs+l) -- (a,b). (35)

Then [P'_] is shown in Figure 7. It should be no_ed

tha_ its denominator time constants are positive, so

tha_ this object does not display nonmlnlmum phase be-

harlot. The forward compensator G chosen in [3} is

given in Fl_re 8.
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The response of this system design to a uniE saep

command a_ 500 RPM in fan soeed, wl_h no command _o

_he other channels is shown in Ficure 9. This se_ o_

curves _erves as a supplemen[ of those of Figures 14

and 15 in [3]. It should be emphJsized chat this de-

sign already displayed a very favorable behavior to

parameter variations of a physically reasonable nature.

For the design, S(o0) was diagonal, with nonzero en-
tries

(S2(s),S_(s),s2(s),sl(s)), (36)

where the nature of the Si(s), as well as plots of

ISi(Jw)!, are shown in Figure I0. Nonetheless, in

order to illustrate the use of a comparison sensitiv-

ity specification, we subjected the model (I) to a

rather severe parameter variation according to the

rule

Aii _ 1.5 Aii. (37)

The result of this parameter chanse is shown in FiB _

ure ii, for comparison with Figure 9.

To adjust for, and improve, this situation, a

sensitivity specification range

S(_O) = Si(s)l , i = 3,4,5, (38)

was selected, with the three possible choices for S i

sketched in Figure 12. Of these possibilities, S 5

was selected for presentation here. With appropriate

modification of the basic design equations of Section

Ill, to account for actuators and sensors, a design

for diagonal H was deter_ined to be

(H2, H2, H2, HI) (39)

with

H I
(s) - (.25)(.01)(.5) (40)

(.01331)(.001331)2 '

(25)(.01)(.02) (41)
H2(s) =

(.01331)(.001331) 2

and a corresponding G of the form

62"9('01331)('001331)2 _(s), (42)

s(.25)(.O1)(l.476xlO-6,2.33xlO -3)

where _ is given approximately in Figure 13.

Fin_lly, Figure 14 indicates the effect achieved

by the comparison sensitivity specification in redu-

cing the influence of the abovementloned parameter

change in A.

V. CONCLUSIONS

In this paper, we have explained the vle%_2olnt

of a total synthesis approach (TSP or ITSP) to linear

multlvarlable control system design. To acco,,_sodate

the effect of parameter variations, the use of an ad-

ditional specification on comparison sensitivity has

been introduced. The combined effect of these spec-

ifications has been illustrated on turbofan engine

data originally studied in [3].
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RELIABLE FLOATING POINT COMPUTATION

OF MINIMAL BASES

R.R. Gejji

_STRACT

Minimal bases are of great znterest in linear

multivariable control due to their use in character-

izing solutions to the minimal design problem (MDP),

an important idea in multivariable control. Only

recently has the literature seen procedures of ade-

quate practical advantage in solving the MDP in

floating point arithmetic. A survey of recent tech-

niques for performing the floating point arithmetic

shows a link to the problem of rank determination in

real matrices. Such rank decisions are usually based

upon a user chosen threshold. The magnitude of some

calculated quantity, termed the decision criterion,

needs to be compared to the threshold. Accurate

calculatien of the decision criterion itself may

depend on the conditioning of the raw data. In this

paper we see the reason why considerations of con-

ditioning are particularly central for MDP calcula-

ticns. _'_P sc!utions arise only out of the linear

dependency existing in the columns of the real

matrix, it is this same linear dependency which also

leads to difficulty with data conditioning. A com-

prehensive case study is given. It comprises a least

squares and a singular value decision criterion,

combined with two existing methods of converting the

problem to a real matrix. As a note on complexity,

the problem for the case study is taken from the

literature and leads to a 20x27 matrix of reals. The

original MDP has seven first degree basis elements in

its solution. The case study leads to a heuristic

balancing rule for reliable computation. The im-

portantanee of balancing becomes explicit by consider-

ation of the underlying premultlplication by a matrix

of polynomials. Such premultiplication routinely oc-

curs in numerous methods of MDP solution. Although

this does not change the essential MDP, it can radi-

cally alter the balance structure of the resulting

real matrix.

I. TEC}LNIQUES FOR SOLVING THE MINIMAL DESIGN

PROBLEM IN FLOATING POINT

In this work R(s) denotes the field of rational

functions in 's' with real coefficients; R[s] is the

ring of polynomlnals in s with real coefficients, R

is the field of reals. Our motivation for this work

came from a study of the Total Synthesis Problem (TSP)

[Refs. 1,2] which led to a problem of kernel compu-

tation in free R[s]-modules. The solution structure

arises from its being associated with a more funda-

mental problem of linear multivariable control, viz.

the Minimal Design Problem (MDP) [Refs. 3,4]. Th--e

MDP states that two R(s)-matrices of size pxq and

pxr are given. Let these be denoted by B.(s) and

B2(s) respectively. Then it is required t_ find a

proper R(s)-matrix B(s) of minimal order (McHillan

degree) such that

B,(s) B(s) = Bo(s ) (i)
The natural ±

approach to solution oF MDP leads to the

construction of the matrix.

B3(s) = [Bl(S) , -B2(s)] (2)

Then the solution can be reduced to a search for the

mi$imal basis [4] for the R[s]-module Ker B3(s )
R q r[s]. Ker denotes kernel. Various authors have

used essentially different forms of the matrix B3(s),

obtained by premultiplieation by suitable square non-

singular R[s]-matrices. This does not change the

structure of its kernel, as noted in [I]. From a

computational viewpoint, we will see, such changes can

be crucial. In particular, the polynomial matrix form

of Bq(s) is of interest. This may be obtained by

suitably multiplying each row of B3(s) to clear out

all denominators. Let this be denoted by B_p[s].

Another computational matter we wish to emphasize

concerns the appearance of a subjective element in the

computation whenever floating point arithmetic is used.

This generally appears in the form of a user defined

threshold or parameter which determines a machine

epsilon, or computationally insignificant "zero".

Next, we address a few remarks to some earlier

efforts in this area. A method to solve MDP was given

by Sain [5] incorporating some of the ideas of [3,4].

The algorithm proceeds in two district segments.

From,the first step an R[s]-vector basis in obtained

for Ker B3(a ). It is possible to specify a degree for

each element of such a basis by expanding into a

polynomial with R-vector coefficients. The second

step systematically reduces the sum total of degrees

of the basis elements to the minimum achievable.

FORTRAN and PL/I language implementations of

Sain's algorithm [6] and later reprogramming in exact

rational arithmetic using FORMAC [7] taught two major

lessions. The prime difficulty in using floating

point software is in recognizing a zero calculated

during computation. Second, the reduction step in-

volved the bulk of the computation.

Recent methods by Foster [8] and Kung and Kailath

WA8-B
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[9] complete]y r]im]nate th(z reduction ._t_p, _;(_iug

directly to a minfma] basis. ]he k_,\ idea that

carries l)_lh the rx, thr,ds i_ renar;.! ]v _.;:::;::ir.

L_'L the iI_L('I:L'r ,j L'qua]. (,r c:,:c_-ud : ,c r,:.;iT,am

l.et t(_(s), tl(s),. .... t (s) :!e _. ,: _- [ 1 : ' l ' r' r ! _ ] :" (_f
degree O, 1,. ...... r-_;p_ctiv( !y. ,!,_u t!,c f;,ll.,.cin_t

matrix contains all the infcrmatic:'_ :_eccs_ar)' to

calculate a minimal basis. Bd(S) =

[to(S)B3(s) tl(S)B3(s) ..... t (!)B3(s)] (3)

Eq. (3) is the essence of Foster's technique.

Foster has suggested a Chebysheff pc lynonia! approach

to selecting t,_(s), .... , t (s). This is described
U

in the reference [8] in greater detail. The claim

remains true if B3(s) is a polynomial matrix B_ [s].
This is used in the Kung-Kailath motived with _Pthe

polynomials to(s), tl(S) ...... tu (s) taken to be
i, s, s _, .... . s _ respectively. The minimal basis

is calculated by successively checking each column

of B4(s) for R-linear dependence on the preceding
ones •

The problem is converted into an R-matrix

problem by replacing B, (s) with _n equivalent real

matrix. Foster does thls by assunzng .or proper

B3(s) , _ to be the observability index ef B_(s) and
N any integer greater than L_+.. Then #or arbi-

. , _hlch are not polestrarv numbers in R Z ...., ,

of B3(s), the matrix {4(s) can'_be replaced b'/ the

real-matrix

"to(X I) B3(_ I) tl(k I) B3(_ I) .-.t,,(zI)B3("I)_

tO(X 2) B3(X 2) • . t_(), 2) B3(,\ 2)

_- = (4)

" l
:to(X N) B3(kN ) t_(XN,) B 3(>N)

In the spirit of the King-Kailath method, a dif-

ferent real matrix may be used in place of B4(s) .

The polynomial matrix B3p[S] is expanded in powers of
K

s as, B3p[S] = R_|0 + RMlS + ... + P_s (5)

where K denotes the maximum degree occurring in

B3p[S], and RM 0 through R_ are real matrices of the

same size as B3p[S]. Then the following is the re-

quired real matrix; it has u+l block columns. (See

below.

"RM 0

RM I

RK = RNK

0

0

0 . . . 0

RM o

O

RM I

RM

O. . . RM K

(6)

11, _1},I[!_';_S } ,R R,'C;K CALCI't,AT]():_ I,% EliAL Y.A_kI(ES

On(c the ;,roblem o:- l inding a minimal basis is

reduced t," dot, training ]in,,;}r dependencies in a real

;',_trix a rc],_t [vclv wide range of methnds

wnilablc : r ,_: ;:feting the solution, in calculating

a l_i:_irunl !;_ fr_m th_ kernel of eigher the real

flat,ix i i _r _l,c _k_trix RF , the method is c:-;a-tiy

[dcnti¢ _'. :;i_(:e both have +I block columns, e_ch

contain _F a_, =,any columns as in B3(s) ,i.e., q+r ,
then the total number of columns in the matrix is

(+l) x (q+r). Suppose w is a real vector of size

(+l)x(q+r) d(.termined to be in the kernel of RF or

RK , it may be partitioned i_to +# block rgws of q+r

elements each. Let w = (Wo-. Wl-, .... w -).

Then the polynomial vector Ware(S) + wltl(s) + ... +
w t (s) is an element of th_ minimal Saris, if w

has been generated according to the following strategy

(explained by both Foster [8] and Kung, Kailath [9]).

Each column of the matrix, from left to right, is

successively checked for linear dependency on the

preceding columns. If such dependency exists, it is

easy to see then that the last column considered may

be written as an R-linear combination of the preceding

ones. Excluding some cases that yield redundant

solutions, it is true that every time a linear de-

pendency is encountered, it then indicates the ex-

istence cf a suitable real vector w which may be

used to generate an element of the minimal basis.

Let us denote b," E , the matrix we are working u'ith,

be it RF (r KK . The technique used by Foster in his

wurk is now explained. At an}' point in the compu-

tation, let }! denote the matrix formed by the
k

linearly independent columns encountered up to that

point, and let h k denote the column being considered

for linear dependency on the columns of Hk . The

rollowing linear least squares problem is solved for

•i.imizell ¢k+hklI (7)
The criterion for a linear dependency decision is

calculated as

= II k%+ hk _ / Mk (8)

The quantity _ has been recommended by Foster to be

most appropriate as _._

=.. 11(%l)II
Here, M denotes the maximum of the Euclidean norms of

all the columns of H. ll'll denotes the Eu-

clidean norm II._ denotes --

the Euclidean norm, and ($k,l) denotes a vector of
dimension one larger than w. , with elements of
followed by unity. In practice, as in earlier _k

work done by Foster [8], M k may also be taken as

II H. II , where for [I"[I • a matrix norm is used. The

usua_ row sum is norm is adequate.

Kung and Kailath have suggested a scheme of re- ....

siduals. First, working with block columns, the re-

sidual for each block column is calculated by sub-

tracting its projections on all the preceding block

columns• %_enever a residual vanishes, it indicates

a dependent column. Now the problem of calculating

residuals is in fact a least squares problem. For

purposes of calculation, the residuals are replaced

by so-called orthonormal residuals. These serve the

same purpose but are capable of being calculated by

Householder type orthogonal transformations, Kung-

_]ilath have not specifically addressed the question

of when a residual may be Created as zero, from

WAS-B
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praet lcal con,,iiderations. Moreover, Lhcrc is a use-
ful recursion in the Foster least squares procedur(,

which offers a significant benefit in tcrnv; of

programmlnt; simplification. In view of the:;(? consid-

eration_;, we have not studied a computer lt, vel imple-

mentation of the Kung-Kailath projection procedure.

The t_,_ techniques we have implemented are the

Foster least squares technique and a singular value

technique which is still to be described in the text

that follows.

The singular value decomposition is first intro-

duced with a Theorem.

Theorem i: (from Laub [i0] Let A be an mxn real

matrix of rank r. Then there exist orthogonal real

matrices U and V of sizes mxm and nxn respectively,

such that

A = U Z v T (i0)

where

S 1 0l

=I: 4
Lo , oJ

S = diag (o I, co,..., :r) with c.z_>0 , I _< i _< r, and

ci_> el+l, i _< i <_ r-i

2he set of numbers gl'''-' cr together with the
definition o = ... = o = o are called the singular

r+l
values of A . In fact, t_ese are the positive square

rots of the eigenvalues of the symmetric matrix
A_A.

The true importance of singular value decom-

positions springs from the following theorem which

has important implications for the problem in

determining rank by numerical methods. This is

because, in actual applications, almost never will a

zero singular value appear in computation, because of

roundoff errors in floating point representations.

There can be real difficulty in determining when a

singular value may be considered zero. The result

included here as a theorem is taken from Laub's work,

but was originally proved elsewhere by Golub, Klema

and Stewart.

Theorem 2: Let A be an mxn real matrix of rank r ,

and assume distances to be defined by spectral norms.

Let oI ..... o be the non-zero singular values of A .

Then all matrices lying strictly inside the or ball

around A have rank >r .

In practice, where floating point data represents

an approximation _ to the actual matrix A , one may

be able to make a statement that A lies within a ball

of A . Here may, for instance, correspond to the

zero threshold, multiplied by the norm of A . Then

if 6<o , it can definitively be said that A has rank

at lea_t r . But if 6>o , no definitive statement

may be made, and it is l_ft to the judgment of the

user whether or not to consider A to have rank less

than r . To assume so would correspond to assuming

that singular value or is in fact, zero, from a

numerical viewpoint. It is interesting to consider

the relationship of this remark to the statement

made in Section I about the user's choice In determi-

sumption of rank deficiency always implies the exercise

of suhjc'ctive jud_;ment on the user's part.

Since the norm of A IIAII = c. and since : is
r

clcarly sensitive to data scaling _he quantity of

interest is always Cr/O I • This quantity turns cut to

be important in its own right in numerical linear

algebra. It is the reciprocal of the number cond(A) =

+
IIAII. IIA II,the so-called "condition num$er of A

with respect to pseudo-inversion", where A denotes

the well-known Moore-Penrose pseudo inverse of A .

Let us return to the problem of calculating a

minimal basis. Typically, it is necessary to de-

termine whether a particular column b is linearly

dependent on the column set of a matrix A . It may

be assumed without loss of generality that the columns

of A have been previously determined to form a lin-

early independent set. Now define the matrix

E = [A; b] (Ii)

Singular value analysis can now be used to determine

whether or not matrix E is rank deficient. This

involves calculating the ratio of the smallest singu-

lar value of E to the largest. If the ratio is exce-

eded by the zero threshold, E may be considered to be

rank deficient.

While it was mentioned before that the singular

values of a matrix A are related to the eigenvalues
of A-A , it is hardly advisable to compute them this

way. The least squares as well as the singular value

method have been program_ed using SPEAKEZY language;

this involves a procedure using stable Householder

transformations.

III. CONSIDERATIONS FOR ACTUAL USE

In the prior sections, we have seen ways in

which the _P problem may be reduced to one of finding

linear dependencies among the columns of a real matrix,

and also some techniques of performing this computation.

For calculations done with perfect accuracy, there is

little to choose among the alternatives available.

But a consideration of the vagaries of finite precision

arithmetic on computers mandates a careful selection

of the method to be used.

Anyone attempting to apply the techniques of the

two previous sections to solving MDP-type problems will

immediately be faced with some uncertain issues. Some

of the questions that might arise are, whether to use

the matrix RF or RK , how to select the various pa-

rameters in forming the matrix RF, whether to use a

singular values or a Foster-type least squares ap-

proach, how to formulate the decision criterion, and

how to choose a zero threshold. The main purpose of

this work is to provide some sort of guidelines by

which a user may proceed in this numerical maze with

some degree of confidence. We also provide a tech-

nique by which a user may be confident that the cor-

rect solution has been obtained. Nevertheless, it is

as well to note that our conclusions are strictly

empirical. A process of experimentation and gaining

experience over a period of time has led to the notions

recorded here. We mention that only an exhaustive

numerical analysis bounding the error in the solutions

obtained by the proposed technique would firmly es-

tablish its validity. A related analysis has been

performed by Foster, whereby a bound is placed on the

condition number of the matrix whose pseudo-lnversion

is necessary for solving the least-squares problems in

this technique. But Foster's bound contains the chosen

zero threshold as a quantity in the denominator [8,

ning a zero threshold. It appears that the as-
WAS- B
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Eq. 3.23], and this reduces the usefulness of the
bound.

In the next section we will take up a detailed

case study of the effects of attc'mptinl_ to s_lve the

saz;e pr_blem bv a variety of diff,,rent lines chosen

within the constraints of the t_:chniques of Sees. I

and II. Here, we first present a discussion of these

questions which pertain to the success of the calcu-

ation. It is best to define at the outset, what we

mean by a good solution. On the basis of working with

an example for which the solution was known in advance,

we may state the following. The primary area of dif-

ficulty for any solution procedure is in correctly

identifying the dependent columns of the real matrix.

All procedures which were able to do this correctly,

led to solutions of adequate accuracy for engineering

purposes, e.g., at least three decimal digits. So

the crucial issue in determining success or failure

of the procedure is not its ability to accurately

calculate the vectors w in the kernel, but the ability

to correctly deduce whether a particular column is a

dependent column.

Another related consideration is that of reso-

ulution. This arises because for each colum_ under

consideration, the decision of whether it is a de-

pendent column is going to be based on some computed

quantity in comparision to the zero threshold. The

decision will be made easier if the decision criterion

is significantly above the threshold for columns

which are not dependent coluns, and is significantly

below it for dependent columns.

The question of choosing the zero threshold is

next considered• We believe the zero threshold to be

an expression of the user's confidence in the data

that comes from the program. For example, if the real

matrix has been calculated to an accuracy of sixteen

decimal digits,"and no further loss of significance

is expected in performing the linear dependency calcu-

lation, then this would be express_ by setting the

value of the zero threshold at i0- . However, in

typical applications, neither of the above situations

is likely to hold. If the real matrix has been calcu-

lated using double precision floating point arithmetic

on a modern computer, one may expect somewhat less

than sixteen significant digits. Moreover, the ad-

ditional loss of accuracy while performing the linear

dependency calculations depends on the conditioning

of the matrix, and hence is a function of the actual

numbers involved. This is the most critical issue

which makes the success of the solution process so

unpredictable.

To understand the relevance of conditioning to

the techniques we are using, it may be said that

• conditioning is a measure of how far from the actual

solution the computed solution may be. If we are

using a least squares procedure, conditioning dictates

the accuracy of the solution to the least squares

problems. If we are using a singular value approach,

conditioning dictates the extent to which the calcu-

lated singular values may be significant. Pseudo-

inversion of matrices with large condition numbers is

akin to division by a very small quantity, and the

process causes the smallest errors to be greatly

magnified. The condition number is the ratio of the

largest to the smallest singular values of the matrix,

but this measure is useless in practice, since ill-

conditioning may preclude an accurate calculation of

the singular values.

The relation of conditioning to matrix rank is

obvious from singular value considerations. The

closer the matrix is to being rank-deflcient, the

higher its condition number, and hence the more the

difficulty to compute with it. Since our problem as-
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sumL.s tl_e existence of rank deficiencies, the dif-

liculty ¢,[ d,'aling with an ill-conditioned n_atri× is

unav_,idablo. To put it pessimistically, the very

fact thaL _ rank deficiency exists, makes it difficult

for us to 4i_cover it.

_,.'_, w_,_] i ]ike to remark here about whether the

preb!cn c_f ill-conditioning affects both the lea:_t-

squarv,_ and the singular value procedures in the

s&me way. Consider our problem of determining

whether the matrix [Aib ] is rank deficient. The

matri× A represents the submatrix formed by columns

of RF or RK , known to be linearly independent and

the vector b represents the column under consideration

Assume the matrix [Alb ] is rank deficient. %he ac-

curacy to which a least-squares solution to the =

problem A_x + b = 0 may be obtained is governed by the

conditioning of the matrix A. On the other hand, the

accuracy of singular values, if we use the singular

value approach, is governed by the conditioning of

the matrix [Aib]. Since the matrix A is full rank•

it is likely to be much better conditioned than the

matrix [Alb] , which is rank-deficient. This would

tempt us to conclude that the least-squares solution

would, in every case, be more favorable. But actual

computational experience failed to bear this out. In

every case, the least-squares and singular value ap-

preaches were both equally effective (or ineffective.

This_ mat be because the decision criterion in the

least-:_q_ares technique requires us to caicuiate the

vanlshi:_l)' small quantity _x + b The accuracy

with which the decision criterion may be calcu]_ntcd

would again be governed by the conditioning of the

matrix [Aib]. Thus, accuracy of the least squares

solution alone does not guarantee a correct decision

on rank-deficiency, a more important issue by far.

We propose that the way out of the dilemma is to

observe that ill-conditioning does not necessarily

mean that erroneous solutions will always result.

It means that a possibility of relatively large errors

does exist. Our strategy begins with the observation __

that on certain kinds of examples the above pro-

cedures to lead to successful solutions. We then

carried out a study to attempt to discover some

pattern among the cases which yielded good solutions.

If we are able to adapt every problem in order to

fit such a pattern, then we have a heuristic rule

for effective use of these computational techniques.

The pattern we discovered is simplicity itself,

although considerable amount of experimentation and --

tzial-and-error procedures were necessary to arrive

at it. Briefly, it was found that when the structure

of the real matrix is such that there is a great deal

of variation in the norms of the rows of the matrix,

it leads to serious computational errors. Meanwhile,

with matrices which demonstrated a balance in the

row norms, the software was able to arrive at the

correct solution without any serious difficulties,

e.g., poor resolution. In solving MDP problems, a

lack of row norm balance (RNB) can arise from the

structure of original matrix B3(s) .

IV. CASE STUDY OF EXAMPLE WITH KNOWN SOLUTION

In this section we considBra more detailed study

of the factors which go into deciding how successful

the solution process is going to be. For this, we

consider an example which demonstrates the complexity

of features that leads to difficulty in solutions.

With reference to Eq. (i), our example, taken from

the work by Gejji and Sain [7], has B1(s) as a
2 X 7 matrix of rational functions. The physical

origins of the problem are described in reference [7].

i



Tile matrix B_(s) is the 2 x 2 identity. This leads

to a matrix _.,(s)_ of size 2 x 9. B 3 Is] has maximum
degree 13 in its entries. _en converted to the form

B3_[s ] , the common denominator polynomial of Bl(S)
ap_cars in the submatrlx formed by the last two of

the nine columns. We point this out, because the

entrie:; in Bl(s) are such that the nemerator and
denominator degrees are quite close. Furthermore,

the leading coefficients are also of the same order.

This fact, coupled with the identity matrix of the

last two columns, leads to a B_(s) which does not

vary a great deal when evaluated over a range of real

values for s . This leads to a built-ln _RB when the

matrix RF is calculated from B3(s). If, on the other
hand, one uses the matrix B_ [s] , a steady increase

in magnitudes of the coefficients with decreasing

degree leads to a highly unbalanced matrix RK .

The problem was first solved by Gejji using

exact rational arithmetic software. This procedure

carried calculations to all significant digits and

took up an inordinate amount of computer time. Later

Foster gave a solution to this problem using the

technique of the matrix RF . This solution was

performed in floating point arithmetic on the PDP-10

computer and reduced CPU time to a reasonable range.

Six cases are presented in our study here.

First, the matrix RF was formulated directly

from the rational matrix B_(s) for the problem. From

Foster's work, we know thaE a value of N = 6 is ade-

quate. We chose N = i0 , _= 2. This is exactly as

is done in Foster's paper. The lues for the real

numbers %1' %2''''' %N were taken to be 5, I0, 20,

30, 40, 50, i00, 200,.500, and i000. The zero thres-
-io

hold was taken as i0 . For convenience, the poly-

n mials t^(s), tl(S), tp(s) were taken to be i, s,
s$ . Thi_ lead_-to a 20 x 27 real matrix.

Next, the pol}momial matrix B 3 Is] corresponding
to our problem was used to form thePmatrix RK. The

coefficients for this were taken from existing data

calculated to an accuracy of fifteen digits. _ was

again taken to be 2 . This led to a 28 x 32 real

matrix.

To set up the third approach, we used experience

to achieve _NB for the second case. In this particular

problem, because of the graded variation of coef-

ficients with degree, it is possible to achieve _NB

by simply scaling the frequency down by a factor of

i0. Such a sealing was applied to the polynomial

matrix B_ [s], and the resulting polynomial matrix

was agai_Pexpanded to yield a new formulation of the

matrix RK. This one has RNB. The frequency scaling

does not change the problem, except that solution

vectors in the minimal basis have to be interpreted

with the scaling in mind.

The three approaches given above were imple-

mented using both the singular values as well as the

least squares techniques for rank determination.

Thus the six cases. The important issue here is not

the vectors appearing in the minimal basis solution;

it is the correct determination of rank dependencies

in the columns of the matrix, k_en ever this hap-

pened, our solution was the same in Foster's work, up

to the three significant digits recoreded by Foster.

Table 1 summarizes the cases tried. All solutions

are judged by the standard set by Case I. This shows

that the first eleven columns are linearly inde-

pendent; and columns 12 through 18 are all dependent.

Here we notice that all the procedures stop when

seven dope dent columns have been found.

Now we give the results one by one. In Case I,

the first eleven columns were found independent and

columns 12 through 18 were determined as dependent.

Table i: The Cases

Case Matrix Rank-finding

Formulation Technique

I RF LS (Least Squares)

II RF SV (Singular Values)

III RK (Unbalanced) LS

IV RK SV

V RK (Balanced) LS

VI RK SV

The values of the decision criterions for columns 2

through 18 are given in the Table 2. Note that we

consider this resolution adequate.

In Case II again, we see that the column de-

pendencies are correctly identified. The decision

criterion for column Ii is quite close to the thres-

hold. The resolution is still quite good.

In Case III, the dependent columns were found to

be columns 13 through 16 and columns 18 and 26. The

dashes in Table 2 indicate that corresponding columns

were not considered because of the selection rule to

eliminate redundant solutions. Notice that only six

dependent solumns were encountered before all 27

columns in the real matrix had been considered.

Normally this would indicate that _ was not chosen

large enough. But in this case, we know that the

solution process is in error. Here, we call attention

to the poor resolution.

In Case IV, the real matrix is the same as that

used in Case III. In spite of the lack of RNB, the

column dependencies were correctly identified and

the correct solution was obtained. A closer exami-

nation reveals that this case suffers from rather poor

resolution. The largest magnitude of the decision

criterion for a dependent column is only one order of

magnitude away from the smallest magnitude obtained

for an independent column.

The results of Case V and VI are essentially

similar. Case V yields somewhat better resolution.

In these cases a modified RK was used, which displayed

_NB due to frequency scalling of the original problem.

Finally, we include the result of an interesting

case that occurred. As we have mentioned, the formu-

lation of the matrix RF holds for polynomial matrices

also, since these come under the heading of rational

matrices. Our problem was converted to a matrix of

polynomials and frequency scaling then applied as in

Case IV. Instead of embedding the resulting matrix

into the structure RK , the matrix RF was then formed,

using values for _i' I ..... %.^ as 0.i, 0.2, 0.4,
0.8, 1.6, 3.2 6.4, 12_8. 25.61_nd 51.2 . The real

matrix thus formed was highly unbalanced and both the
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Co Iu_n

2

3

4

5

6

7

8

9

lO

ii

12

13

14

25

16

17

18

19

2O

21

22

23

24

25

26

27

Table 2: The Rusu]_s

_. <}6

I I.I x 10 -3

xI0-"
C

--4

1.91 x i0

8.80 x I0 -6

8.21 x i0--_

1.02 x 10 -3
2.76 x i0 -_

_o3.4

0.204

-15

5.49 x 10_15

1.28 x 10_17
3.89 x 20

1.35 x 10 -16

1.35 x 10 -17
-15

2.20 x 10 -I
i.i0 x i0 -I_

2 i<_ x <0 -3 i

2 43 x :0-; i
1 72 x I0 -_.

1 59 x 20-_

1 42 x i0-_

1 26 x I0-_

7 83 x i0-_

3.71 x i01_

_5i17__i_0__ _
-18

3.39 x 10_18

1.19 x 10_19

4.89 x 10_19

8.04 x 10_19
8.55 x I0

3.30 x 10 -18

3.32 x 10-18

0.330

0.060

0.040

2.72 x 10 -3

4.01 x i0-_

2.25 x i0-_

7.41 x i0-._

6.19 x lO-.4

_ _1
1.9ox 1o:I°
4.45 x i0_i 2

5.94 x 10_12

5.47 x 10_11
6.79 x I0

i. 33 x 10 -10

4.36 x i0-_ 1

4.32 x 10- 6
5.67 x i0-

9.14 x I0 -I0

5.09 x i0 -II

r). 2i

',_. ',73

0. O306

0.212
6.68 x 10 -3

1 72 x 20-_

18 x i0-_

_.3o x lO-_
_.26 x 20 -_

3.28 x 10 -10

-12

5.33 x 10_12

8 36 x i0_I 1

1 28 x I0_i 1

1 72 x I0_i 1

21_69 x 10_Ii90 x 10

7.72 x I0 -12

V

0.294 x 1071

_4.76 x i0-.5

4.54 x 10-_

1.13 x I0-_

8.86 x I0 -_

0.0135

6.25 x 10 -5

0.0399

6.94 x 10 -3

7.64 x 10 -12

2.29 x 10 -12

3.95 x 10 -13

4.23 x 10 -13
-13

4.23 x 10_12
3.97 x i0

1.63 x i0 -II

o. 17_

O.Oa5
-3

7.44 :.: !0
-J

4.74 x i0

1.39 x 10-, 3

2.40 x 20 -_

1.57 x 10-4

1.27 x 201_5
1.09 x i0

1.04 x 10 -6

1.79 x

5 46x

5 99x

7 34 x

6 67 x

2.37 x

1.89 x

--iO .-_

I0 _t
i0 -_j

-13
I0 ,_

i0 -ij

-13
I0

107;
I0-I-

LS and SV methods failed due to problems of real

number overflow. We then performed a "brute-force"

normalization of this real matrix. Each row of the

matrix was scaled by the inverse of its norm. The

singular value criterion was then used to perform

the linear dependency checking. This led to the fol-

lowing values of the decision criterion for columns

2 through ii, 0._24, 0.132, 0:0263, 0.0116. 3.67 x

i0-_, 7.33 x i0-_, 2.65 x i0 -_, 3.38 x i0 -O, 2.89 x

i0- , 1.26 x iO -D, a_ for columns1_2 through 181pthe

following,_lO x 10 ---, _158 x i0---, _I18 x i0---,

5.2_x i0---, 2.64 x 10---, 1.85 x iO---, 1.86 x
I0- I. Thus, this technique offered results comparable

to Cases V and VI. For the correct floating point

solution first obtained by Foster please see [8].

This shows that there are seven vectors in the mini-

mal basis, and the maximum degree occurring in each

is one. Each vector is therefore considered of first

degree.

It is observed from the above case study that a

convenient and useful method to get reliable

solutions using the techniques of Foster and Kung-

Kailath is to aim for RNB.
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AN APPLICATION OF TOTAL SYNTHESIS TO ROBUST COUPLED DESIGN*
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Notre Dame, Indiana 46556

ABSTRACT

Total synthesis techniques for the control of linear multivariable sys-

tems are module theoretic methods aimed at bottom line design, wherein the

designer selects at the outset the control action and system response char-
acteristics which will be attained. This selection is made from the class

having associated with it the possibility of an internally stable feedback

realization. In practice, however, such realizations are normally carried

out with decentralized dynamlcs---or fixed structure. Moreover, they must

be achieved in such a way that plant parameter variation does not materially

inhibit the nominal filter responses. This paper reports on the extension

of the Total S_ynthesis Problem (TSP) concept to robust feedback realizations

of fixed structure. An example from turbojet engine data illustrates the

concepts.

INTRODUCTION

In the following discussion, the object of control is understood to

satisfy the state equations

=AX + Bu (la)

y = Cx + Du , (Ib)

for x, u, and y members of the n, m, and p dimensional real vector

spaces X, U, and Y, respectively. This brief exposition will assume

that control goals include a command/response relationship between an exo-

genous signal r, which takes its values in a p dimensional real vector

space R, and the pair (u,y).

Consider now the expression of such a relationship in the frequency do-

main. Denote the field of real numbers by R, the principal ideal domain

ring generated from R---consldered as a commutative ring---and the inde-

terminate element s by _[s], and the quotient field of _[s] by _(s).

Then the constructions [I]

U[s] =u_s[s] ,

X[s] = x e_ sis] ,

Y[s] = Y % _[s] ,

establish free _[s]-modules U[s], X[s], Y[s], and R[s],

In turn, these imbed naturally into the _(s)-vector spaces

(2a)

(2b)

(2c)

(2d)

respectively.

U(s) = u _p. s(s) , (3a)

*This work was supported by the Office of Naval Research under Contract

N00014-79-C-0475.
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in the manner

x(s) - x _R S(s) ,

Y(s) = Y _IR IR(s) ,

R(s) = R _R e(s) ,

u[s] Cu(s) ,

x(s] Cx(s) ,

X[s] C Y(s) ,

R[s] -_R(s) .

In this context, the plant appears as a morphism

P : U(s)_ Y(s) .

It is further assumed that there exists a morphism

M : R(s)_ U(s) ,

(3b)

(3c)

(3d)

(4a)

(4b)

(4c)

(4d)

(5)

(6)

which embodies the coramand/control action relationship, and that there ex-

ists a morphlsm

T : R(s) -_ Y(s) , (7)

which characterizes the command/system response relationship. Broadly

speaking, the assumptions reflected in (6) and (7) mean that the discussion

is in focus on linear feedback control systems.

Practical design and comphtation can be carried out through a process

of basis selection in U, X, Y, and R. Understood as elements of U[s],

X[s], Y[s], and R[s], these basis vectors become free generators of their

associated _[s]-modules. In like manner, understood as elements of U(s),

X(s), Y(s), and R(s), they comprise a basis for their associated _(s)-

vector spaces as well. Denote by [L] the matrix of a morphlsm

of F-vector spaces

parts

L : V 1 ÷ V2 (8)

V i, i = 1,2. Then (5), (6), and (7) have their counter-

[P] : m(s) m _ _(s) p ,

{M] : m(s) p _ m(s) m ,

IT] : _(s)p - a(s)p .

(9)

(lO)

(zz)

These ideas and notations are now applied to define and elaborate the idea

of total synthesis.

THE TOTAL SYNTHESIS PROBLEM

The idea of total synthesis revolves around the commutative diagram of

Figure I, which points out the basic feature that any pair (M,T) brought

about by a feedback control system must coexist with the plant or object of
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j-

M

R(s) R(s)_

i

',

u(s) ._Y(s) u(s).
P

\
\

\
\T

\

.,p ,

\

_Y(s)

Figure i. Figure 2.

control.

the pair

In other words, with

P - C(sl x - A)

(M,T) must satisfy

-i
B + D , (12)

T = P a M . (13)

The T_otal S_ynthesls P_roblem (TSP) is brought about through a study of the

possible pairs (M,T) which can satisfy (13) for a given P. TSP may be

conceptualized as follows. Denote by

horn (R(s),Y(s)) (14)

The _(s)-vector space of morphisms with domain R(s) and codomain Y(s).

In like manner, establish

horn (R(s), U(s)) , (15)

with the alternative codomaln U(s). Then the action

(M,T) _ p o M - T (16)

establishes a morphlsm

horn (R(s), UCs)) x horn (RCs), Y(s)) -_ horn (RCs), Y(s)) . (17)

Denote this morphlsm by F: then Ker F is an appropriate setting within

which to begin a study of TSP.

It is important to realize at the outset, however, that the rational

subspace Ker F is much too capacious a place in general within which to

design control systems. Indeed, arbitrary pairs (M,T) taken from Ker F

may not be feedback realizable in an internally stable way. It is easy to

see why this is the case. Suppose that [M] contained unstable elements of

_(s). Then a command r would generate unstable control action u, a sit-

uation which is at odds with the notion of internal stability. Moreover,

internal stability would also require that [T] have stable elements from

_(s) as well. Accordingly, the pair ([M], [T]) must have its _(s)-ele-

ments in the stable subring of _(s). Beyond this natural condition, it is

clearly desirable from the practical point of view to require each entry in

[HI and in [T] to be proper. Failure to do so would create unacceptable

177



transients in response to fast commands.

When D is the zero morphism, Bengtsson [2] established in 1977 the
resul$s which could be used to show that _(s)-elements in [M] and IT]
being stable and proper was both necessary and sufficient for the pair (H,
T) to admit an internally stable feedback realization. However, Bengtsson's
working assumptions involved centralized controller dynamics, whereas many
applications require the distribution of dynamics in the controller to more
than one site. Stated in other words, the Bengtsson configuration places
little constraint upon the connections within the controller, whereas many
applications have such constraints.

If connection constraints within the controller make it useful to dis-

tribute the controller dynamics to more than one location, then the stable

and proper conditions on ([M], [T]), while still necessary, may not be

sufficient for internal stability.

COMPUTATIONAL ASPECTS

J

As discussed in the section preceding, TSP studies of possible pairs

(M,T) are located generally within Ker F. In particular, however, condi-

tions of internally stable feedback realizability require that the study be

localized to pairs (M,T) whose matrices ([M],[T]) are proper and stable.

Because the subring of proper and stable elements in _(s) fails to achieve

the status of a field---the multiplicative inverse of a stable transfer fun-

ction need not be stable---it is appropriate to examine Ker F from a mod-

ule theoretic, as opposed to a vector space theoretic, point of view. A

practical approach to computing the stable and proper part of Ker F is to

suppress, temporarily, the properness condition and to calculate a basis

for the stable part of Ker F. Because transfer functions without denomi-

nators may be regarded as stable in this sense, polynomials can serve as

such basis elements. Once the polynomials are obtained, properness can be

restored by dividing basis elements with Hurwitz polynomials of appropriate

degree, such operations being just basis transformations within the stable

kernel. The idea can be seen in the following first step of the turbojet

example•

Turbojet Example: Step 1

Consider the single spool turbojet

Hoff [3]. For this model, the plant state description is given by

engine model due to Skira and De-

[A] - ; [B] = ;
I0 - 0 -i

L ojLoJ.i 18 0 0-

[C] - ; [D] = .

.06 .46

(18)

Then a brief calculation establishes that

F36.1(.OOO554s + 1) 7.23(-.248s + 1)]
[P] -L.52(.0884s2 + .554s + i) .018(.1667s + i)

(.Is 2 + .6s + i)

• (19)

Let
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dp(S) = .is z + .6s + 1 , (20)

and denote by Np the numerator matrix in (19).

understood in the manner

where the representations

The kernel problem can be

[Np _ - dp(S)l] FNMI =0 , (21)

NM

[M] d (s) '
(22)

N T

[T]= dT(S ) ,
(23)

have been employed. Columns of the matrix

are computed so that they constitute a basis for the stable part of

In this example, they were found to be

(24)

Ker F.

-2.5 2.17s - 8.70 l

s + i0 43.5 [

17.95 .435 [ , (25)

-1.12 s - 3.74 J

so that a base choice for _ and NT is

-2.5 2.17s - 8.7_ (26)NM" + i0 43.5 '

However, it would be rare indeed if the choices (26) and (27) turned out to

be physically saclsfac_ory, inasmuch as they represent an arbitrary choice

of basis. What is needed next in the design process is a manipulation of

the basis (25) so as to move toward a desirable practical design. One ap-

proach to this goal is to adjust the zeros and gains of [P] so as to

reach an alternate pattern. Notice that the given gain matrix of [P] is

Just

F36.1 7.231
I •

[P]Is - 0 L.52 .ols.j (28)

The signs and magnitudes of the indlvidual entries in (28) may be taken as

an indication of the natural propensities of the plant. While changes in

the pattern of (28) may reflect interesting design goals, it is necessary

to bear in mind tha_ gross changes may tend to invalidate the original plant

data or may result in the plant operating locally in a manner which is not

in keeping with its global features. Notice also that the ll-element of

[P] has a rather large left half plane zero, and that the 12-element of
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[P] has a right half plane zero. As an example design strategy, suppose
that it is chosen to

i) move the zero of the ll-element farther out in the
left half plane;

li) reduce the gain in the 21-element;

ill) remove the zero of the 12-element from the right half
plane.

A least squares procedure can be applied in order to pick polynomle entries
in Ker F which are in the aggregate as close as possible to matrices NT
which would have the three properties listed above. The result of one such
calculation is given by

m

.0291s + .0223

-5 2
-2.79 x i0 s - .0557s + .0271

5.00 x 10-4s + i

•0134s + .0121
m

where NM appears in the top two rows and
Here

under the choice

w

-.289s + 2.3

2
-.0531s - .775s - 10.9

.953s + 4.31

-.135s + 1

m

NT in the bottom two rows.

1 4.31

=
NT Is=0 0121 1

(29)

(3O)

dT(S) = _(s) - (.2s+l)(.O4s+l) , (31)

(30) may be compared with (28). The sign pattern in the gain matrix has

been maintained, with some readjustment of relative galn magnitudes in the

second channel, as well as near normalization in the first channel. The

zero of the ll-element has moved to -2,000 from its original position; the

gain in the 21-element has decreased from .52 to .0121; and the zero in the

12-element has migrated from 4.03 in the right half plane to -4.52 in the

left half plane• As is usually the case, this adjustment must be traded

off against other changes which occur consequentially• Of particular im-

portance is the creation of a right half plane zero in the 22-element. Also

worthy of mention is the use of second degree elements in the kernel; these

are seen in the upper two rows of (29). Second degree elements were em-

ployed in order to achieve more satisfactorily the three design goals elab-

orated above. The consequence is greater complexity in the controller.

Remark i

The use of (21) to define the kernel problem permits interpretation of

the calculation in terms of free _[s]-modules along the lines of (2). This

way of thinking has been presented in [4]. However, the infinite precision

algorithms discussed in [4] are not useful in the case of finite precision

[5]. Instead, it is convenient to retain the free-modular viewpoint while

constructing a minimal (sum of column degrees) basis with the aid of ideas

of Foster [6] or of Kung and Kailath (see [7]).

180



jr-

Remark 2

Second degree elements, as appearing in (29), may connote one of two

events. If only free IR[s]-modular basis changing isomorphisms are used to

construct (29) from (25), then the solution indicates a non-minimal (sum

of column degrees) basis. If (25) is adjusted in the larger class of monic,

rank two morphisms to reach (29), then attention in Ker F has been spec-

ialized to a submodule. The latter case is ordinarily to be avoided be-

cause £t increases the number of closed loop system multlvariable zeros be-

yond the required minimum quantity present in (25).

ROBUST FEEDBACK REALIZATION

Suppose next that feedback realization of the pair (M,T) is to be

achieved within the fixed configuration of Figure 3. Regard T, as deter-

mined in the preceding dlscusslon---cf. (29) and (31)---as given; and re-

call that the plant of the turbojet example is stable. Then G and H :

Y(s) _ R(s) will be chosen so as to realize the pair (M,T) and to reach

a given level of comparison sensitivity to inaccuracies in the plant. Ac-

cording to the results of Cruz and Perkins [8], it is a straightforward

derivation to show that S : Y(s) _ Y(s), the comparison sensitivity op-

erator, satisfies the pair of equations

S, P *G=T , (32)

T o H- tZCs) - s .

Because S is an isomorphism, (32) can be expressed

p . G _, S-I • T .

For this brief treatment, suppose that P is monic and that

n(s)
Is] - I ,

with (n(s),d(s)) c _[s] 2 and d(s) _ 0. Then

-I
G=S oM,

(33)

(34)

(35)

(36)

which is unstable only if n(s)

garded as an equation for pairs

interesting particular solution

is unstable. Moreover, (33) may be re-

(H,S), in which case it has an especially

(0,Iy(s)). (37)

Figure 3. Fixed Structure Feedback Realization.
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Figure 4. Unit Step in First Channel.

The complementary solutions can be found from another kernel problem

(38)

because [S] must be stable in order to ensure internal loop stability,

and because instabilities in [H] would be undesirable from the viewpoint

of multlvarlable zeros in the closed loop, the same module theoretic and

computational ideas described above for (M,T) pairs may be applied here

to (H,S) pairs. To accommodate the sort of assumption (35), softwares

of the Foster or Kung-Kailath type can be appropriately modified.
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Figure 5. Unit Step in Second Channel.

Taken all together, IT] stable, [G] stable, [P] stable, and [HI

stable precluda Internal instabillties.

Turbojet Example: See 2 2

Calculation of a basis for stable complementary solutions in (38),

under the constraint (35), yleZds the result

where _(s)

and where

(39)

has its zeros equal to the multivariable zeros of the [T],

NH is of degree three---a consequence of the constraint (35).
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A choice of degree three for Hurwitz d(s) assures [H] and [S] proper

and stable. The particulars of d(s) may be established by root-locus or

Bode analysis. Final choice for (35) was determined to be

n(s____= .O001s 2 + .2855s (40)

d(s) .0001s 2 + .02s + i

the form of which places integrators in C.

Figures 4 and 5 show the nominal step responses Yi and the step re-

sponses Yi which result from the change of AI2 to -.9. Steady state

behavior is preserved. This large parameter change increases the oscilla-

tory plant behavior while leaving it stable.

Bibliographical Remark

The origins of the TSP concept are cited in [9]. For the unity feed-

back case, an extension to a larger class of plants is given in [i0].
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ABSTRACT

The last decade has witnessed a general
maturing of theoretical thought on linear multi-
variable control system design; and, movements
are now afoot to imbed certain of these thoughts
into the bigger area of nonlinear design. As all
this has transpired, however, nonlinear design
has been proceeding apace in industrial applica-

tions. The present paper is part of an effort by
the authors to formulate some theoretical views
about current practical design procedures in the
nonlinear domain.

I. INTRODUCTION

The spirit of nonlinear control system
design can vary somewhat from one application
area to another. Remarks made herein are in-

fluenced strongly by current practice in air-
craft gas turbine control systems. In this case,
the plant is a highly sophisticated piece of
hardware, whose best available model is a digital
simulation supplied by the manufacturer. Models
of the form _ : f(x,u),y=g(x,u) are not explicitly
available; and, even if an approximation of such
type could be determined, its complexity would be
formidable. Nonetheless, control systems for such
cases must be, and are, successfully designed. An
example of such a system is given in the next

section, and this paper briefly describes a
typical design procedure.

Basically, the control philosophy is to
linearize the simulation at a finite number of

points in a flight envelope involving engine
speed, mach number and altitude. Linear phil-
osophy is applied at each point, and the resulting
compensations are scheduled over the envelope,

within a broad, nonlinear model following strategy.

The design viewpoint employed here is based
upon the prior work [i,2,3,4,5], A concept of

Total Synthesis Problem is put into place for the
nonlinear control situation, and a beginning is
made on relating it to the scheduled designs
typically used in practice.

II. NONLINEAR TURBOJET MODEL FEATURES

A nonlinear engine model is depicted in
Figure I. It is representative of the nonlinear
objects designers of turbine engine controls
currently deal with in practice. A nonlinear
engine model typically is constructed by engine
manufacturers and provided to control manufactur-
ers in the form of a digital or hybrid combuter
simulation.

• . , --_j_ _ '"__'. _ .

.
I ! (t
t

t '!

Figure I

The simplified J-85 engine model in Figure i
consists of only two integrators but includes nine
nonlinear functions, eleven multipliers and

dividers and eight summing junctions. The model
describes the nonlinear dynamical and steady state

relationships between two inputs u: fuel flow, Nf,
and exhaust nozzle area, Ai, and seven outputs y:
engine speed, N; turbine iiilettemperature, T4;
and five other outputs. One can think of the
plant simulation as a nonlinear function p which
takes inputs to outputs, namely p (u): y. A local
snapshot of the nonlinear plant should give the
small signal behavior and a linear description P
such that P (Au):Ay. The underlying notion in
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'_ this paperis that linear descriptions,obtained
from )ocal action, may be combined to produce
global nonlinear action with sufficient integrity
to effect closed loop control design.

Ill. A TOTAL SYNTHESIS PRO_LE!I

In reference [4],the authors have discussed
the concept of a Total Synthesis Problem (TSP) for
linear multivariable control. This section relax-
es some of those concepts from the homomorphism
case to the function case, thereby introducing the
possibility of nonlinearity. Of necessity, the
treatment is merely an introductory glimpse.

Consider Figure 2. For simplicity, assume

" _ _'- _'_-' LL__._.... L---Jf

Figur_ 2

that the control u and output y are elements of
commutative groups (U,+,O) and( Y,+,O ) respect-
ively. As functions, then, p: U--Y is the plant,
g: Y--U is feedback compensation, m: Y--U is
feedforward compensation, and t: Y--Y is desired
output request/response. For the case of nominal

design, in which the plant is stable, it is
desired to have the relationship.

t : p o m, (z)

where the symbol o denotes function composition.
The Total Synthesis Problem is then to find pairs
( t,m ) satisfying this relationship, for given p.
Pictorially, TSP can be
visualized in the manner

of Figure 3. Locally, the
nature of the pair (t, m )

can frequently be directly
studied. Suppose that the
plant has internal representa-
tion £0 : f(x_,u),y : g(x_,u);
and cohsider _ fixed (_,_
such that f (_,_) = O. Then

Y_,

I "

m I %_t
I ,_

v
U p Y

Figure 3

suitable technicalities imply that the actions of

f and g may be represented locally by

f (x,u):_(x- _)+_( u-_)+..:_ _x÷B_u+ ...

g (x,u):Z(x- _)_( u-q)+..-_ _x+O_u+ ...(2)

In the transform domain, with _y=y-g ( #,_ ),p has
local character

_(s). of course, depends upon (_,_)_ The ide_ is
to achieve )ocal designs for _(s), _Is), and _(s)

and then to schedule them into global control by
selecting explicit matrix functions of the form

(x,u,s)_ T(x,_,$ ); G(x,u,s)where _,_,S ) "(S), T(x,u,s)W?(s), and G _,_,s) = _( . At no

time is f or g explicitly determined, except

locally through (A, B, C, D ); moreover, the
resulting 9]oba] controller is tested by computer
simulation.

iV. LOCAL DESIGN EQUATIONS

In references [2,3,4,5] the authors have
discussed and illustrated linear multivariable
control synthesis methods using the input-output
viewpoint. These methods give a capability, lo-
cally, to design internally stable feedback con-
trollers which achieve prespecified output re-
sponse.

Briefly, the above established that for a
unity feedback system as in Figure 4: If a stable

Figure 4

square plant P(s) is giveTT,a controller G(s)
produces internally stable, feedback realizable
closed loop response T(s) only if:

M : p-i T , M proper & stable (4)

and

G : p-iQ : p-1 T ( I - T )-1 (5)

Equation (_) is called the synthesis equation
because it displays all admissible response_T(s)
and M(s). Equation (5) is the control dynamics
design equation. The synthesis equation is used
to assure acceptable response choices T and M ;
the design equation then gives controller dynamics
G. The relationships are pictured by the block
diagrams in Figure _.

Since the controller G is linear, to use it
in a nonlinear system, steady state information
lost in linearization must be restored. One way
to do this (I) is to supply appropriate input, ur,

and request, Yrc levels to the control loop. An
augmented control loop conforming locally to the
Total Synthesis Problem discussed in Section Ill

Figure 5

is shown in Figure 5. The aDIzroach provides
coordinated input requests Ur and output requests

Yrc with the closed loop in balance. The overall
response is T; the closed loop response may be TL.
This structure organizes and realizes control

action in terms of significant system character-
istics: the desired response T, the synthesis
matrix M and the controller G. This is consider-
ed an extension of [i].
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V. CONTROLLERSCHEDULING

A nonlinearplant p suchas that shownin
Figure I has local character,andidentification
methodscanprovidea local state spaceor freq-
uencydomaindescription fromwhicha local
plant transfer function P(s) canbeobtained. If
a desired local responseT(s) is selected, the
foregoingequations(4) and(5) give li(s) andG(s)
respectively. This canbe repeated at any desired
number of locations to obtain a set of T,M and G
matrices. These m_y be linked together as a
function of plant condition to form nonlinear con-

trol elements. Thus {T)_t, {M}_m, {G}_g and
of course {P}_p.

For a practical nonlinear turbojet control,
the foregoing is not sufficient by itself; de-
sired output schedules, transient control means
and plant protection functions are also necessary.
The control structure in Figure 2 adapted to the
J-85 enqine model becomes Figure 6.

_ w_ Y

This scheme provides the basic features
needed for nonlinear turbojet engine control. It
is the structure used in the design example which
folIows.

VI. DESIGN EX_IPLE

The process todesign a nonlinear control
for the J-85 turbojet engine shown in Figure i
was as follows:

!. Identified local engine dynamics at select-
ed points.

2, Chose desired local responses: T overall

and TL closed loop.

3. Designed local matrices t.land G.

Linked local matrices by scheduling as a
function of engine speed to obtain non-
linear controller elements t, m and g.

o Established desired steady state output
schedules, transient control and protection

logic.

6. Simulated and examined local and full range
performance.

Since two inputs (fuel flow Wf and nozzle

area Aj) are available, only two outputs may be
independently controlled at any one time [3,2].

Engine speed, N, and turbine temperature, T4, were
selected for control.

The nonlinear engine model was identified at
four local conditions: 50,72, 85, and 100 speed
levels. At 100% speed condition the local
characteristics of the engine are by defined by

_ 67 (.18s+I) 15_ (.18s+I ]P(s)= _17 (i.3s+I) - . (.O05s+1)J
(.62s+i) (.18s+l) (6)

A nonlinear, decoupled response function t
was selected where the time constant for the speed
and temperature response varied smoothly from .4
sec @ 72% N to .2 sec @ 100% N. Thus 100% N, the

local system response matrix T is T = diag
(I/.2s+1)). The loop response matrix is TL=diag
(i/(.ls+1)) for the entire operating range.

For the given P(s) and the chosen T(s), the

synthesis matrix M(s) and the control dynamics
G(s) a+ 100% speed are

F.o95 (.ooss+z) z,8 (.zBs+1)l
r1(s)= p-IT = L.O08 (1.32s+i) -.28 ( 18sti)].

(.2s+I) (7)

G(s)=p-1T(I-T) "I :[95(.oo5s,1)2 l  s+1>n108 (1.32s+I) -2.8 118s+I)](8 )
S

Of course, M, G and T are dependent on local
condition; therefore, the _I,G and T matrices were
scheduled as a function of engine speed and formed
the nonlinear controller elements m, g and t. The
form of the nonlinear control g is shown in
Figure 7.

Figure 7

AWf

,_" Y _ _Aj

Nonlinear Controller

The nonlinear system was assembled in accord-
ance with Figure 6 and simulated on a hybrid com-

puter. The authors are happy to gratefully ac-
knowledge the contribution of Mr. Ben Jacobs of
The Bendix Corporation for the expert simulation
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of the system. Theoperatingrangeof interest
wasfrom70%N to 100%N.

Figure8 showsthe responseof speedNand
turbine temperatureT relative to their requested
valuesfor a series o95,_step commandsover the
operatingrange. Theoutputsfollow the requests
satisfactorily recalling that the desired response
time constant at 70% was .4 seconds and at 100%
was .2 seconds. The system is stable over the

entire range and performs essentially as desired.
Figure 9 shows the response of the inputs, fuel

flow Wf and nozzle area Aj, corresponding.

"--- T .......- .........

l i J _ a _ m • G ,i sl _ a

Figure 8

-4,i......;

T11I - I,

Figure 9

Figure lO

Full range acceleration and deceleration
transients are shown in Figures 10 a_d 11. The
outputs track the requests without overshoot and
the transient time is less than three seconds.

Corresponding response of the inputs is shown in

Figure 11. The input responses are reasonable
and within limits.

\ ........--------
--.._---,__ __-__._ _ __ .... :._.__- .

Figure 11

VII. SUI.IMARYRE_tARKS

A nonlinear control synthesis method was de-
scribed. It extends and generalizes earlier work

[I] and establishes connections with prior linear
theory and concepts of local response, synthesis
and controller matrices. The ideas are chosen to
be compatible with practice in aircraft turbine
control, and to illustrate the viewpoint of a

major type of application thinking.

A concept of Total Synthesis Problem was in-
troduced for the nonlinear domain, building on

prior linear theory and ideas.
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ABSTRACT

The importance of nonlinear models for model following methods so prevalent in the modern

turbofan engine industry dictates the need for reliable techniques for nonlinear model gen-

eration. This-paper reports upon a :ontlnulng investigation aimed at developing nonlinear

differential models utilizing the notions of power series and algebraic tensors. Emphasis

of the study is on an application of these ideas in nonlinear model generation using a real-

time digital turbofan engine simulation.

INTRODUCTION

>_odel following control systems constitute a solid backbone for ouch of the control work in

modern aviation. Basically, one has the plant, which may be an airframe or an engine---or

both the airframe and the engine regarded as an integrated whole. Under, certain conditions,

such as temperatures, pressures, and compressor speeds, the plant may be said to satisfy cer-

tain nonlinear differential equations. Moreover, many of the variables in these equations

are related to one another through complicated nonlinear maps. It is within this range of

acceptable condfclons thac any realistic control system must carry, on its work. Accordingly,

when a control system receives a request to change important physical quantities within the

Dlant, it must arrange to do so in such a way that the plant moves to the new condirlon with-

out violating its identity, that Is, without leaving the acceptable region of conditions any-

where along the way. For example, if altitude is to be changed, then this must be accompli-

shed without stall. Or. if thrust is to be changed, it must be changed without permitting

excessive increases in turbine inlet temperature.

The reason that model following control thinking is so useful in such situations is due to

the fact that the models may be used to prescribe behaviors which are in consonance with the

region of acceptable plant conditions. Scheduled over an operating envelope, such models can

absorb a large part of control stress, and can free the feedback loop for its primary task of

achieving accuracy in the presence of parametric uncertainties and disturbances.

This paper deals with srudles on the use ol algebraic Censors Ill for generating a family of

nonlinear models. The main feature of the algebraic tensor involves she way that it gives

ground on dimensionallty in order to gein advantages of llnearity. This provides an organ-

ized way of looking at expansion formula and provides a direct llne with parameter identlfi-

:atlon techniques for linear equations. Basically, one has to design initial conditions and

control signals in order to assure that the nonlinear _odel will outperform the linear model

locally, as well as arranging that it yield a larger region of acceptable modeling. Such

modeling exercises have been exhibited in _2I and [3] for representative off-slmulator ex-

amples. Our _urpose here, then, is to apply the techniques to nonlinear model generation

using a real-tlme digital turbofan engine simulation, and to present some preliminary repre-

sentative results.

ALGEBRAIC TENSORS IN MODELING

We illustrate now the use of algsbralc tensors in nonlinear model building, utilizing ideas

of power series and truncation approximations. To this end, let x ¢ X be the n-vector of

states and u c U be the m-vector of inputs, where X and U are real vector spaces. Con-

sider the nonlinear ordinary differential equation

*This work was supported by the National Aeronautics and Space Administration under Grant

NSG 3048.
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- f(x,u); (1)

we will assume without loss that :he origin is an equilibrium point of (I). The function

f : X x U - X, under certain technical assumptions such as analyticity Ln a neighborhood of

(0,0) in X x U, may be expressed in a power series expansion of two variables. Due to the

notational complexity of higher order mixed partial derivatives, only the first few terms of

recorded. However, if we employ the universal bilinear ten-

- X _ U [4,5], where the nm-dimensional real vector space

X with U, we can express the right side of (1) in the

such an expansion may be easily

sot product function _) : X x L'

X _ U is the tensor product of

compact form

f(x,u)-ji 0 ki 0 .j.,_.,Mjk (_o x_ ...© x_ _ ® u ® ..._ _) . (2)
J times k times

The main feature of (2) lies in the fact that the M_ k are linear maps, facilitating an or-

derly treatment of higher order corms in the expansion. Su_ e-_e_ements are built up by iter-

ation, as for exa_.ple (X _ (X _ U)) _ U.

A nonlinear model of (I) can be obtained by truncation of (2). To allow for this (2) may be

simplified by introducing the new linear map Ljk whose action is that of Mjk followed by

the scalar multiplication by I/J!k_. Thus. a linear identification problem may be formula-

ted via the equation

- [Llo L01 L20 Lll tO2 L30 ...] x T (3)

where x_ is a vector oartitioned into tensor product terms in an appropriate order, given

by (x, u, x _ x, x _ u, u O u, x _ x _ x .... ). Consider the tensor product associated with

the L12 map which is generated by elements in X _ U _ U. For then case of n - 3 and m

• 2, the 12 monimals of x _ u _ u consist of terms such as x_u_, xlu_u., xlu2u I, and

so on. But due to the co_utatlvlty of scalar multiplication in the field there exist three

redundant ter_s; elimination of these terms results in an object of dimension 9. In gen-

eral, the number of distinct elements from each product is given by the combinatorial ex-

pression

P = (n _ q - I) . (m • r - l) (4)
q r

for'q copies of x and r copies of u in the produc_. Construction of _he system con-

sists of stacking these monomials in the vector _'r to give a reduced-slze version of (3),

which amounts to • use of the s}_metric tensor algebra [5]. It is important tO note that

now the matrix Ljk is of reduced size, corresponding to the reduced order structure.

To complete the construction of our approximate system, sinuosidal inputs are applied to (I),

and the state solutions are sampled at h selected time points. These sampled values are

loaded into the pxh matrix XT. The first n-_ rows of X T are determined from the sampled

values of x and u; the remaining p-(n+m) r_s contain monomisls which are multiplies

of the entries of those first _ rows. The nxh matrix X is formed by loading derivatives

estlmates for x_, xg, ..., Xn at the h time points. As an illustration, for an approx-

imation retaining up :o third degree tensor product ter'zs we have

= [LID t01 L20 Lll L02 L30 L21 L12 L03] XT . (5)

The method employed here in solving for the coefficient matrix uses a singular value decom-

position of the transpose of XT to solve the minimal least-squares problem, returning the

nxp partitioned matrix of the Ljk.

APPLICATION: JET ENGINE SLMULATOR

In the modeling discussions to follow attention will center around NASA's QCSEE ("Qulxie")---

_uiet, _lean, S_hort-haul !xperlmental E_n_Ine [6]. Following in the evolution of tur-

bojet to turbofan engines in aircraft propulsion, the QCSE e_glne _s an advanced turbofan

designed specifically for powered-llft, short-haul aircraft. The engine incorporates sever-

al new concepts not all currently used on turbofans to achieve optimal efficiency as well as

quiet, clean operation. Primary uses of qcsEE-type engines will be on short take off and

landing (STOL) aircraft, promising brighter prospects for compact metropolitan airports.

An ideal of any propulsion si_ulatlon is tO achieve absolute realism for use in flight simu-

lators. To approach this ideal requires very. detailed digital _imulatlons in the form of

complex computer programs. The goal of the QC$EE simulator program employed in this study

has been to achieve real time propulsion simulation =o be used in aircraft simulators with
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under°the-wlng engine appllca_icn.

For the analytical model to be discussed, the states and controls employed are as follows.

Engine states are the combuetor exit temperature and rotor dynamics in the form of the fan

speed and compressor speed. Control inputs are the fuel metering valve position (which de-

termlnes main burner fuel flow), nozzle area setting, and a fan pitch angle parameter for

control of the variable pitch fan. Thus a three-state, three-control model will be formu-

lated. Model formulations using more _han three states are currently under investigation.

Engine operation for the mc_el identification can take _o basin approaches. The engine sim-

ulator ma 7 be run with the loop closed, that is, with the digital controller segment fully

operative, while simply varying the power demand (or, equivalently, the "throttle") about

some equilibrium point. Figure i _llustretes this scheme where we represent the engine dy_

namlcs in terms of the states and their derivatives. The reference input power demand (PWR.X)

is depicted as a sinusoidal perturbation which in turn, with plant measurements Ym, deter-

mines the controller dynamics. An slterllatlve approach for the simulator operation involves

opening the loop, effectively deactivating the controller and independently inserting the

individual control inputs. This situation is portrayed in Figure 2 where we insert a con-

stanc power demand and "turn-off" the controller by equating the controller state derivatives

with zero. In this way slnusoidal inputs, u, may be inserted and engine states observed.

In the second approach mentioned above, which we will adopt here, nonlinearities of the plane

are excited which might other%'ise have been less pronounced had the controller been in the

loop. For 5oth operations the engine simulator is run into the steady state prior to any

perturbations in order to establish an operating point. The initial conditions _hus gener-

ated form the point of expansion for the series truncation approximation in the model formu-

latlon.

S_'_LE RESULTS

[n this final section we offer an overview of the procedure for an identification using the

QCSEE simulator. As mentioned in the preceding section, the operation of QCSEE for purposes

of model generation in this study is of the type depicted in Figure 2. The simulator is run

with a lOOZ power demand for several seconds to settle all transients. This produces some

equillbrlum value (Xo,U O) where x and u each consist of three elements. Within the

digital simulation program the control variables are manipulated so thac a sinusoldal input

with some amplitude and frequency is inserted into each input channel. Likewise, the state

variables are perturbed from their equilibrlu_ values and then sampled over some interval at

evenly spaced points in time. The dlfference between these sampled values and the correspon-

ding equilibrium values form the block of observed data for the identification procedure.

The derivative values are also extracted directly from _he simulator at _he given sample

times so that a truncation approximation, such as that given in (5), may be formulated. Or-

derlng of the elements in x T is of crltlnsl import for identification as well as slmula-

tion of the model; a complete algorithm for such an ordering procedure may be found in [2].

Validation studies of a model consist of comparing model responses to true responses of the

state variables to perturbations in the initial states and input signal parameters about the

polnC at which the model is identified. Moreover. a standard linear approximation model is

normally identified by another method and also used in the comparison studies. All simula-

tions here are done in the open loop. For example, observe the response curves given in

Figures 3-5. The first plot represents a sample response for perturbations in the initial

state values; Figure 3 shows the behavior of the compressor speed for a decrease to 25X of

the perEurbatlon used in the identification. Figure 4 represents the response of the com-

pressor speed for a downward perturbation In the control signal amplitudes. Finally, Figure

5 exh_blts the fan speed behavlor for s 20Z increase in frequencies in each signal.

Preliminary studies have resulted in several nonlinear models for specific identification

points. To illustrate the type of simulations which result from such models, representative

response curves have been presented with various input parameter sets for one such model. A

final identification, that is, one with full vallda£1on studies, is currently under inves-

_Igatlon.
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ABSTRACT

Whenthe plant is a highly sophisticated piece of hardware, whose best
available model is a digital or hybrid computer simulation provided by the
manufacturer, a commonnonlinear control design philosophy is to linearize
the simulation at a finite number of points in the operation envelope, to
apply linear design strategy at each point, and to schedule the resulting
compensations over the envelope, within a broad, nonlinear, model following
scheme. This study is part of a continuing effort by the authors to arti-
culate some theoretical views of this method. Included is a new local ex-
tension of comparison sensitivity to the model following case. Nonlinear
turboje= engine illustrations are also given.
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!. INTRODUCTION

The theory of nonlinear automatic control sys-

tems presents a difficult challenge to the intellec-

tual coranunity. On the one hand, considerable pro-

gress has been made, as in the topical areas of op-

tlmal control, feedback stabilization, and algorithms.

On the other hand, a great deal of industrial design

still seems to proceed without the explicit use of

such ideas. Some leading theoreticians have suggested

that more effort needs to be spent upon co=--unicatin g

existing theoretical concepts to control design engi-

neers. Others have opined chat the ideas are not in

use because they are not in demand. However the truth

may be distributed among these camps, we can certainly

point out that optimal control theory is an indirect

way of vlewlnz the problem, a sort of technologically

advanced version of "putting all the eggs in one bas-

ket"; and we can see that certain applications may re-

quire a more direct design insight. Moreover, we can

recognize that stability is necessary, but not suffi-

cient, for practical deslgn-uand that the stability

issue is frequently resolved in practice by local and

full range simulations and tests.

Classroom models of the form

i = f(x,u)

y " g(x,u)

may not be explicitly available. Though approxlmate

versions of such models can be contemplated, they may

turn out to be formidably complex---or worse, intrac-

table. These remarks can be motivated by the area of

aircraft gas turbine control systems. In this case,

the plant is" a highly sophisticated piece of hardware,

whose best available model is a digital or hybrid slm-

ulatlon supplied by the manufacturer. Even in such

cases, however, control systems must be, and are, de-

signed. The nonlinear turbojet engine model used i_

this paper falls into such a category, and we hope

that It illustrates the point.

The work reported here is part of a continuing

effort [I,2] by the authors to formulate some theore-

tlcal views concerning current practical deslgn proce-

dures in these cases. We recognize that nonlinear con-

trol design varies from one application area to another;

and we point out that our remarks are certainly influ-

enced by current practice for aircraft gas turbines.

However, we believe that many practical situations are

quite similar in spirit. Thus, we hope to further the

theory/application dialogue.

We will discuss the control philosophy which lln-

earlzes the simulation at a finite number of points

over the envelope of operation, which applies linear

design technique locally about each such point, and

which strings all the local designs together into a

global design by scheduling the resulting compensations

over the envelope, as a function of key physical vari-

ables, and within a broad, nonllnaar model following

strategy.

The sections following contain a review of rele-

vant local model following ideas, an extension of the

local comparison sensitivity concept to the model fol-

lowing situation, a presentation of the global model

following concept, and a complete illustration based

upon a realistic nonlinear turbojet engine simulation.

II. LOCAL THEORY

Let F be a field. Then FIe] is the principal

ideal domain of polynomials in s wlth coefficients

in F, and F(S) is its quotient field [3]. Let V

be an F-vector space of finite dimension. Define the

F-vector spaces

FIe] % v (I)
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and

F(s) QF V (2)

respectively, using the conventional tensor product
[3]. It is not dlCficult to see that (1) admits the

structure of an F[s]-module, denoted V[s], and that

(2) admits the structure of an F(s)-vector space, de-
noted V(s).

Next, let R, U, and Y be F-vector spaces of

finite dimension. We think of R as a space of con-

stant, exogenous request vectors, of U as a space
of constant control inputs, and of Y as a space of

constant plant responses, To make these spaces dy-
namical, we form the F[s]-modules R[s], U[s], and

Y[s] and the F(s)-vector spaces R(s), U(s), and

Y(s), respectively.
The plant, in an input/output sense, is then de-

fined by a morphlsm

P(s) : u(s) _ Y(_)

of F(s)-vector spaces. The matrix /P(s)] of the

_orphlsm P(s)o for suitable basis choLces in U(s)

and Y(s), has its elements in F(s).

Each such morphism of finite-dlmenslonal F(s)-

vector spaces has associated with it a pole module

[4]; and this pole module has a unique monlc minimal

polynomial m(P) associated with it. Plants can be

classified according to the properties of m(P). For

example, if F = _, the real numbers, we can say
that the plant is stable whenever m(P) is strictly

Hurwitz. Here generally, let Sg_ F[sl be closed
under multiplication, exclude the zero polynomial,

and Include the polynomial I. Ne then say that the

plant P(s) is good if m(P) c S_.
By the Nominal Death.n_ Problem_(_P), we shall

mean the selection of a pair (H(s),T(s)) of good
morphisms

H(s) : R(s) - V(s)

and

TCs) : R(s)_ YCs)

such that the dlagrnm of Figure I commutes.

R(s)

M(s)// _\T(s)
/ \

g

U (sl.._£(S)
P(S)

Figure i. Nominal Design Problem.

The condition that (H(s),T(s)) be a good pair is

motivated by the concept of internal stability in
feedback realizations of the controller. Notice that

M(s) represents the action of the controller, which

abstractly can be understood as a morphism

C(s) : R(s) x Y(s) - U(s) (3)

of F(s)-vec¢or spaces, in the o_tput feedback case.
T(s) represents the input/output response of the con-

¢toi system to dynamical, exogenous signals. Notice
also that NDP is not the Model Matching Problem (_'MP),

as for example in [5], because T(s) is not regarded

as given. In _, the diagram of Figure I would have

to be modified so that the T(s) arrow is solid, and
not dashed.

To accommodate the idea of achieving M(s) with

feedback, we introduce _he notion of the Feedback Svn-

thesis Problem (FSP), which is to determine a morphism

C(s), as in (3), in such a way that, combined with

P(s), a well defined mapping R(s) _ Y(s) results

and is equal to T(s). By Itself, FSP offers little

challenge, unless the plant is not good. In such sit-

uations, and indeed in the general feedback control

problem, we are led to look at an Internal, instead of

an Input/output, description of the system which gen-

erates T(s). Indeed, the system also has a pole mod-

ule, whenever C(s) geoerates a well defined mapping

R(s) _ Y(s); and we can speak of the Good Feedback

Synthesis Problem (GFSP), which is Just FSP with the

minimal polynomial of the system being good. Again,

if F _ R, one version of CFSP is FSP with internal

stabilization. See, for example, the work of Bengtsson

and Pernebo [6,7].

We define the Total Svnthesls Problem (TSP) as the

combination of NDP and GFSP. Notice that this repre-

sents a generalization and refinement of the original

TSP notion in [8]. Examvles of the TSP way of think-

ing may be found in [8,9,10].

From both a conceptual and a numerical point of

view, it turns out _o be very convenient [ll,12] to

consider TSP in terms of coprlme factorlzations of

P(s), for example

u{s]

Figure 2. Right Coprlme Factorizatlon.

the right coprlme case of Figure 2, in which D(s) is

• monomorphism of F{s]-modules, in which N(s) is a

mor_hism of _[s]-modules, and in which any other such

pair (D(s),N(s)) is related to (D(s),N(s)) by the

morphlem a(s) indicated.

llI. TSP AND COMPARISON SENSITIVITY

To insert a notion of robustness into the design
procedure, we build upon the classic idea of compari-

son sensitivity, originated by Cruz and Perkins [13]

in 1964. Recently, Cruz, Freudenberg, and Looze [14]

have shown that the comparison sensitivity matrix re-

lates not only to perturbations in the plant but also

to the important Issue of stability robustness, For

a detailed example of this utility, see Sain, Ha, and
Perkins [15].

For purposes of th_s section, we shall suppose

that FSP is carried out within the structure of Figure
3. In this configuration, the feedback loop produces

Figure 3. FSP Structure.
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incremental control action Au, while K(s) produces

a control action request u r. The plant response re-

quest Yr is in R(s), which in many cases may be
taken equal to Y(s).

The Cruz-Perkins vle_point [13,14] considers and

compares two solutions (C(s),H(s),K(s),L(s)) to
FSP. The feedforvard solution is given by (M(s),O,

0,1), and the feedback solution is of the form

(_(s),H(s),O,l). It is assumed that N_P has been
solved when P(s) = P'(s), the nominal plant. When

Pfs) # P'(s), the feedforward solution gives an error

_lls can be rewritten in the manner

(I+_,,Hp')-I(cHP*M+M+&K) = M,

from which'

(I+G/,P')-I_K = O.

Thus, AK - 0, and we have the diagram of Figure 4.

For this case, we have shown that

E_nf " SElf ,

a result in the Cruz-Perkins tradition, Notice that

Eff = P(s)M(s) - T(s),

and the feedback solution gives an error

Efb " 41 + P(s)G(s)H(s))'IP(s)G(s) - T(s). L, TIP(s) - P'(s) _[

The central observation Is that V -7

Efb = S(s)Eff, _ i

where u r

S(_) : Y(s) - Y(s) =

has action given by

S(s) " (i + P(s)C(s)H(s)) "I.

Other solutions, such as (C(sl,l,O,L(s)) have been Tloop P(s)=P*Is)
considered; but it is believed that the following dis-

cussion is novel.

Consider the error Emf, when P(s) _ pO(s) in Figure 4. Natural Version of Figure 3.
Figure 3. The subscript (mr) stands for model fol-

lowing, the implication of which should soon become
clear. Then, with (s) suppressed, the zero choice for _L in the expression for Emf

occurs naturally, inasmuch as AP is not a control-

. w - .-mr (I+PCH)'Ip(cL+K) T fable quan=itv and Mloop must be of reasonable ac-

tion. Notice further that the loop is active only

" (I+PGH)-Ip(CL+K) " (I+P°GH)-Ip'(CL+K) when P is not equal to P'.

- S (P - (I+PGH) S'P') (GL+K) . IV. A NONLINEAR NDP

Now regard the perturbation in P as additive, namely The ideas of NDP can be extended to the nonlinear

P - P" + AP; then case [2]. We sketch them briefly here. Assume that

the request r, the control u, and the resp?nse y

Emf - SAP (i - GH S°P °} (GL+K) are elements of com_utatlve groups (R,÷.O), (U,+,O),

and (Y,+,O) respectively. As functions, then, p :

= SAP (I+GHPO)-I(GL+K) 0 _ Y is the plant_ t : R _ Y gives control system

response, and m : R _ U provides control action.

the last step following from [16]. Next write L - The diagram of Figure I can be redrawn as in Figure 5.
HT ÷ AL. K = H ÷ AK. With these, and the c_utatlve

diagram of Figure i, we have

Emf - S {APM ÷ _P(I+CHP')'IGAL m_ .I _ t

+ AP(I+GHP') -I _K} .

Notice that APH is Eff. In the second term, (1 +

CHP')-IG might be called M1--''__u because it generates
Au from the loop request LYr -v M. must be of

_oop

reasonable galn-bandwidth product, so that the loop

is effective. Thus it is natural to propose choosing

AL small, or even zero. in order to reduce the ef-

fect of the second term. Therefore, choose AL = O;

then the fact that Figure 3 realizes M implies the

relation

(i + GHP*) "I (GHT + K) = M .

u > Y
P

Figure 5. Nonlinear NDP.

The idea is to solve TSP locally at a finite number of

points in the envelope of operation and schedule these
solutions into a family

((G(s), H(s), K(s)° L(s))}

which then infers functions g, h, k, and i respec-

¢ively.
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V. TI'RBOJET _:ODEL

The J-85 engine model in Figure 6 consists of

two integrators, nine nonlinear functions, eleven

multipller_ and dividers, nnd elght su=mlng Junctions.

The model describes the nonlinear dynamical and

steady state relationships between the inputs u :

fuel flow Wf and exhaust nozzle area Aj, and sev-

en outputs y : including engine speed N, turbine

inlet temperature T 4. This model is, on a small

scale, representative of the nonlinear objects seen

by turbine engine control desfgners in practice.

T

I ,

i

1

Figure 6

T 4

¸---I

i ,P3.
L .,':. I pI

_,.I_ _ -.

Vl. LOCAL DESIGN EQUATIONS

In references [1,2,8,9,10,15,17,18} the authors

have presented and illustrated linear and nonlinear

multivariable control design methods using the input-

output transfer function point of view. In this pa-

per, earlier ideas are extended to include closed-

loop sensitivity specifications together with response

specifications.

A linear control structure which embodies the

Total Synthesis Problem including sensitivity is show_

in Figure 4. The system response matrix is T; the

closed-loop response matrix is Tloop; the closed-

loop sensitivity matrix is S: and all may be sel-

ected by the designer to suit applications, as out-

lined briefly in Sectlon VIII.

Four key equations define controller dynamics in

terms of response and sensitivity specifications:

M " p-i T; H proper & stable (4)

= p-i proper & stable (5)
Mloop Tloop; Hloop

p-i - (6)
G = S ITloop

= T -1 CI-S) (7)
loop

Equations (4) and (5) are called synthesis equations

because tht'y display all possible responses T, Tloop

and H, }f . Equations (6) and (7) are design equa-
loop

lions for the forward and feedback dynamics respec-

tively. These equations allow for specification of

both response and sensitivity performance of the sys-

tem at the outset and throughout the design process.

VII. LOCAL TO NONLINEAR CONTROL

Nonlinear plant models p, as shown in Figure 6,

almost always exhibit linear dynamical behavior in a

neighborhood of an operating point. Hence. identifi-

cation methods can provide state space or frequency

domain characterization from which the local plant

transfer function matrix P(s) can be obtained. This

process, repeated at desired operating conditions, ob-

rains a set of plant transfer functions {P(s)}.

A linear philosophy applied at desired operating

points _or selected sets of system responses {T},

closed-loop responses (Tloop} and sensitivities {S}

generates the sets of controller matrices (M}, {G},

(H} via the key equations (4) through (7). These

sets may be linked or scheduled as functions of plant

operating conditions to form nonlinear control system

elements. Thus {T} ÷ t, {M} _ m, {C} _ g, {H} " h.

Desired steady state operating schedules, tran-

sient control means and plant protection limit func-

tions are also necessary to establish a basic nonlin-

ear turbojet control system. These transform the lin-

ear system in Figure 4 to _he nonlinear system in Fig-

ure 7.

Vlll. DESICN PROCEDURE

Briefly, the steps to design a nonlinear control

for the J-85 turbojet engine model are as follows:

I. Select available engine inputs and outputs. Es-

tablish desired operating schedules.

2. Identify local engine dynamics. Check plant in-

vertibility.

3. Choose desired local response T, Tloop and sen-
sitivity S,

4. Design local matrices M, G, H.

S. Schedule local matrices with engine speed. Obtain

nonlinear controller elements m, g, h, h • t.

6. Check local and full range performance by simula-

tion.

Two inputs (fuel flow Wf, PPH, and nozzle area Aj,

IN 2) are available on the J-85 engine; therefore,

only two outputs may be independently controlled at any

given time [i]. Engine speed N, RPM, and turbine

temperature T 4, °R, were selected for control. The

nonlinear engine model was identified at five sea le-

vel conditions: 50, 72, 85, lO0 and II0% speed levels.

The transfer function matrix of the engine is defined

by P(s). The engine output vector is [N,Td] and

the engine input vector is [Wf,Aj]. At i00% speed

conditions the plant transfer function was identified

to be
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L.

4"-

5.67( .18s,l} 56(.I_s*1}

.17(1.30s_I) -x.g(.sObs+l)

Po

(.62s,I) (.13s+_)

The plant inverse matrix is

.009(.OOSs*l) Z.80(._gs*l)

p-I o .OO8(I._XOs*X) - .28(.18s*I)

I

Performance Koals for the system can be establlshed

and selected, for example:

• perfect steady state tracking of output schedules.

• system response of turbine temperature: no over-

shoot and ._ second lag between requested and eng-

ine temperature for smooth action at all conditions.

• system response of speed: no overshoot and .2 sec-

ond lag at 100% conditions increasing smoothly to a

.4 second lag at 72% conditions.

• closed-loop response at all conditions equal to .2

second la_ and zero steady state error.

o sensitivity of the closed-loop of same form as un-

it'; feedback confl_uratlon and 8 times better than

unity feedback for improved performance under plant

parameter variation.

The above performance _oais translate into the fol-

lowing response and sensitivity matrices at 100% speed

condIKions:

T • .':s*L

0 _ Tl°°°

$ • _ I (Unity F/B) S • [

Note that sensitivity matrices are S = [0] at s - O.

This specification on the closed-loop produces steady

state tracking results. "Pne controller matrices M,

G, and H can now be calculated at i00% speed con-

ditlons; and in similar manner, at other engine op-

eratlng conditions. The sets of controller matrices

are scheduled as a function of engine speed to form

the nonlinear control system elements m, g, h and

h • t. The form of the nonlinear control element 8

is shown in Figure 8 below.

The nonlinear system, Figure 7o was simulated on

a hybrid computer. The operating range of interest

was fro_ 70%N to 100%N. The authors gratefully ack-

nowledge the assistance and contributions of Mr. Ben

Jaeobs of the Bendix Corporation for the expert slm-

ulatlon of the system.

Full range acceleration and deceleration trans-

Ients of the feedback system are sho_m in Figure 9 and

I0. The outputs track the requests without overshoot

and the transient time is less than 3 seconds. Cor-

responding response of the _nputs is shown in Figure

I0. The _nput responses are reasonable and within

limits.
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ABST_kCT

The design of nonlinear control systems for gas turbine engines frequently involves a ccmbi-

nation of feedforward scheduling ana local, dynamic feedback regulation on the desired final

responses. Scheduling the feedback dynamics, or adding dynamical tuning to the feedforward

schedules, creates a class of nonlinear dynamical controllers which is often classical in na-

ture, as for example the first few terms in a series expsnslon. Tensor algebra provides a

universal setting within which to parameterlze such representations. Moreover, if such mod-

els are available for the engine itself, then there exist feedback =ontrol theories based up-

on them. In this paper, a model of tensor type is computed and tested locally on a digital

simulation of the QCSE gas turbine emglne.

INTRODUCTION

The use of local, linear dynamical models in control of gaS_turbine engines has received a

great deal of attention in the last ten years. While the lion's share of control action for

such engines tends to be the result of feedforaard schedules, the local feedback applied to

reach desired response points along these schedules is o_ great importance. In particular,

careful choice of the local controller dynamics can achieve quick, smooth settling, without

undesirable overshoots in crucial variables, as for example temperatures in the vicinity of

turbines.

Such local dynamics are frequently scheduled also, as a function of a smoothly changing phys-

ical variable, such as a speed. _%en this is accomplished, the local control dynamics be-

come nonlinear in nature; and key examples can be viewed in terms of vector fields created

by polynomic functions of state and control, or, more generally, in terms of power series.

Tensor algebra provides a universal parameterizat!on within which to represent such schemes.

Moreover, there exist feedback theories designed to accommodate plant models based upon such

representations.

Accordingly, there is interest in application studies of tensor models. In this paper, we

provide one such study, on a QCSE engine simulator.

For background, we consider briefly some tensor ideas and issues associated with nonlinear

modeling. A short description of the QCSE engine itself is given, and then the application

is dlscusse4 in detail.

TENSOR IDEAS

We begin our discussion with a brief description of the tools to be employed in the nonlinear

model formulation. Let V and W be real vector spaces and let (®rV,®r) be a tensor pro-

duct for r copies o_ V, where each integer r is two or greater. For convenience we de-
fine sly - V and • - _. Then by the unique factorizatlon _roperty of the tensor produce

[i], for every r-linear mapping

: v r * w (I)

there exists a unique linear mapping

*This work was supported by the National Aeronautics and Space Administration under Grant

NSG 3048.
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: ®rv - W (2)

such that _ - \ • s r for $he r-llnear mapping • t : V r _ ®rv. If L(vr;w) denotes th®

real vector space of r-linear mappings from V r to W, and L(orv,w) denotes the real

vector space of linear mappings from erv to W, =he implication is that

L(OrV.W) _ L(Vr;W) (3)

is a vector space isomorphism.

These notions may be tied to the discussion of abstract derivatives and the calculus on norm-

ed vector spaces. As an introduction, equip V and W with norms and let Z be open in

V. Suppose that the mapping f : Z _ W is differentlable _t i point p in Z, in the

usual sense (see, for example, [2,3]). We denote the derivative of f : Z - W at p by

(Df)(p) : V _ W, (4)

and note that

Df : Z _ L(V,W); (5)

that is, the derivative mapping (4) is a linear mapping, an element of L(V,W). _he notion

extends for higher derivatives, defined in a recursive fashion as

(Drf)(p) = (D(Dr-lf))(p) (6)

provided the (r-l)st derivative is dlfferentiable, since

D2f(p) _ L(V.L(V)W)),

D3f(p) _ L(V,L(V,L(V,W))), (7)

and so on. It can be shown that there exist isomorphisms

L(V2;W) ÷ L(V,L(V,W)),

L(V3;W) _ L(V.L(V,L(V,W))), (8)

so that Drf(p) can be regarded as an r-llnear mapping V r - W, up to isomorphism. We

suppress this isomorphism and think of Drf(p) as Just such a mapping.

It is now straightforward to establish a connection with the tensor ideas expressed above.

The r-linear mapping (I), for our purposes given by Drf(p) : V r _ W, can be composed from

a linear mapping erv _ W and the universal r-llnear tensor product mapping ®r : vr _ ®rv.

This connection, facilitated by the i$omorphlsms _3) and (8), is explored in the section fol-

lowin_ for the case of dynamical system representation.

MODEL STRUCTbq_E

Suppose that the dynamical system which we wish to model is described by the nonlinear ordl-

nary differential equation

- f(x,u) (9)

for f : X w U - X, where X and U are normed real vector spaces of states and controls,

respectively. Using the notation of the preceding sectlo_, leg (x,_) be a fixed point in

Z open in X _ U, and suppose _hat f : X x U - X is of sufficien_ smoothness on Z. Then,

formally,

f(x + x, _ ÷ u) - _ (Dkf)(_._)(x.u) (k) , (i0)
k-O

where (x,u) (k) . ((x,u),(x.u) ..... (x,u)) k tlmes. We note that the series in (I0) could

be represented by a finite number of terms =ogether with a remainder ter_ in a standard ap-

pllcatlon of Taylor's formula. Indeed, for practical applications, such as the present pa-

per, a truncation approxlmation of (i0) is considered. Unfortunately, llmi=atlons of space

forbid diseusslons concerning such issues as existence of solutions to (9) or questions re-

lated to the convergence of (iO).
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We now make use of the fact that (Dkf)(x._) in (i0) is a k-llnear mapping, which suggests

a means of applying tensor product ideas. Let (@_(X _ U),_ k) be a censor product for k

copies of X _ U. Then we may make the unique factorize=ion

okf(i,]) . Lk(_,_) • k (ii)

where Lk(_,u ) : ®k(x _ U) - X is a linear mapping, Now let the notation (x,u) k denote

the k-fold tensor product of (x,u) with itself. Then upon substitution of (ll) into (I0)
we have

i Lk<_,__Cx,u>k.f(i+x._+u)- _T (12)
k=O

It is shown in [4] that the individual tens of (12) may be re_rritten as, for example,

I

2_ L2(_'_)(x'u)2 " L20(_'_)x_x + Lll(X'_)x@u + Lo2(X'_)ueu" (i3)

In this way the formal expansion (i0) becomes

f(x+x,_+la) - _ _ Lij(x,_)x i @ u j, (14)
i-0 J-O

which forms the structure for the nonlinear model.

As alluded to earlier, in practice the series (14) may be truncated in an approximation of

(9). The task in =he model building s_heme, =hen, is to identify the parameters contained

in matrix representations of the Lij(x,u) , once ordered bases for the spaces in question

are chosen. For more discussion of the details involved in such an exercise, the reader may
wish to consult [_,61.

QCSE E_GIXE

The intent of this section is to supply a brief introduction to NASA's QCSEE ("Quixie")---

_ulet, _lean, _hnrthaul _xperimen=al Englne---prlor to discussing an appilcatlon of the mod-

eling methodology described above. The QCSE engine is an advanced turbofan designed specif-

ically for powered-llft, short-haul aircraft, and combines several innovative concepts to

achieve optimal efficiency with quiet) clean operation [7,8]. The eight physical quantities

chosen as sta_e varlab_es for the system include two fan speeds, four pressures, and _o

temperatures. A digital controller is incorporated into the overall design [9], and the

control inputs are the main burner fuel flov, the fan pltch angle, and the fan nozzle area.

For the modeling exercises of this study, a detailed digltal simulation developed for the

QCSE engine [I0] is employed. The primary input variable to he manipulated in the digital

program is the percentage power demand, P_'RX, for testing performance over the entire enve-

lope of operation. Values of individual internal variables are extracted and inserted at

various locations within the program.

APPLICATION

Actentlon in the following discussion will center around the formulation of a reduced order

four-state, three-control analytical model. The engine states chosen are the combustor dis-

charge pressure (P4GS), _he core nozzle total pressure (PSGS), and the rotor dynamics in the

form of fan speed (NL), and compressor speed (N_). All three engine control inputs are em-

ployed, namely, the main burner fuel flow (_'FM), the exhaust nozzle area (AIS) and the fan

pitch angle (BETAF).

Appropriate engine operation for the model Ident£flcation involves opening the loop by de-

activlting the controller and independently inserting the individual control inputs. In =hls

strategy, nonlinearities of the plant exlst-_which might otherwise be less noticeable had

the controller been present in the loop. A further explanation of this strategy as well as

an alternate one are presented in [Ill. An important point to note is that, in the open

loop situation, the choice of input control siguals is critical. This is due co the fact

tha_ the engine itself has certain physical limlte, which in turn have been incorporated into

the simulator. In reality, exceeding these limits could cause severe damage to the engine,
an example of which is turbine melt down.

To aid in the selection of input elgnal$, a family of parametric plots have been constructed

using QCSEE steady state data from idle (62.5% PWRX) to maximum power (100% PWILX). Figure 1

contains an example of one such steady state plot. From these plots a set of acceptable in-

put signals can be selected. Acceptable state perturbations can he selected in a similar
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fashion. Another important feature of these steady state plots is that they suggest regions

Of nonlinearity. From Figure _ it appears that in the locality of 92% power demand the eng-

ine is nonlinear due to the abcupt changes in exhaust nozzle area and fan pitch angle. With

this in m/nd, we shall establish 921 as the operating point of the present study. Model form-

ulatlons at other operating points are currently under investigation.

The follc_rlng is an overview of the identification procedure. The QCSEE simulator is run,

closed loop, with a 92Z power @e_mand for ten_seconds to settle all t_anslents. This pro-

duces the equillbriumvalue (x,u), where x is a four-tuple and u is a three-tuple.

The initial conditions thus generated form the point of expansion for the series truncation

approximation in the model formulation. Within the digital simulation program the controller

is dlsconnected by setting the control derivatives to zero. From the steady state plots a

point (_,_) is chosen on the engine operating llne at 93% Tower demand. The state vari-

ables are perturbed x from their equilibrium values where

x-_-_.

Furthermore, the control variables are manipulated so that a cosinusoidal input of amplitude

s is inserted, _,here a is a three-tuple given by the expression

am_-u.

The observed states and inputs are sampled over a six second interval; I00 samples are even-

ly spaced at .06 seconds, and the difference between these values and the correspondlng

equilibrium values, together wi_h the ordered monom/als from _he tensor product terms (see

[5]) comprise one of two blocks of data necessary for the identification. The second block

of data consists of the state derivative values which are extracted directly from the simu-

lator at the given sample rate. Through_use of these da_a blocks, the parameters contained

in matrix representations of the Lij(x,u) can be identified via a least squares minimiza-
tion technique.

Using the above procedure, rwo models have been identified: a second-degree nonlinear model,

and a flrst-degree linear model. The linear model has been identified for use in comparison

studies. The second-degree approximation keeps second degree tensor products which are as-

soclated wi_h quadratic terms. Accordingly, such a nonlinear model is expected to outper-

form the linear model in a region about the point of expansion.

A simple error comparison criterion is used in testing the performance of the nonlinear mod-

el versus that of the linear model. Let E_ denote the absolute maximum error in the non-

linear model solution, as compared to the true simulation solution, over the time range of

simulation for _he ith s_ate variable, Similarly, we define _ for the linear model error.

Then c i is the comparison $_ - c_. Thus, if ¢_ is negative, the nonlinear model has

exhibited a smaller maximum absolute error in the Ith state, and in that sense has outper-

formed the linear model. Table i contains a llst of the state varlables, _helr correspond-

ing QCSEE variable name, their uni: of measure, as well as their correspondlng state nota-

tion x i, Samples of the error comparison for various initial condltlons, input amplitudes

and frequencies are presented in Table 2. All input frequencies are in Hertz.

The error criterion in Table 2 clearly indicates that the nonlinear model outperforms the

linear model in a region about the equilibrium point; however, there exists a better method

for revealing nodal performance, namely, trajectory comparison. Consequently, a representa-

tive number of comparative solution plots have been included in Figures 2-10. Figure 2 of-

fers a simulation of pressure PeGs for a step response, whereas Figures 3-4 illustrate PeGS

and _ respectively for _he £req_ency se_ _ - (.25, 0., .5). A simulatlo_ of PdGS is

shown in Figure 5 for an excursion away from the typical engine llne of operation, and llke-

wise Figure 6 depicts NH. Figures 7-8 illustrate the speeds _% and h_ for a lZ amplitude

control sisal, and finally PdGS and .NL are seen in Figures 9-10 with Inlt_al condltlons of

approximately IZ.

COMI_UTING E.VVIRO,_ENT

The software package, developed using the extensive capabilities of the IBM and DEC Co_nand

Procedure Languages and _he strengths of FORTRA_ and SPLA/CEZY, is divided into two segments

and tailored to utilize effectively existent computer hardware. The intersctlve nonlinear

model generation segment is implezent_d on a Time Sharing Op_lon (TSO) of _he IBM 370-168

computer system, where the memory dependent, and highly computational routines of the pack-

age can b_neflt from use of the virtual memory, and floating point hardware.

Once a nonlinear model is identified on the IBM 370-16a, i: is transferred to a DEC PDP el/

60, where, i_ an in_erstive environment, it can be analyzed and compared to a linear model

and the _rue solution. This Is accomplished through use of _he nonlinear simulation segment
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of the package. In this manner, the routines can use both the graphics capabilities of a
Tektronix 4025 video term/nal, and a Versatec electrostatic printer/plotter for the display

of data and comparative trajectories.

CONCLUSIONS

This paper has presented an application illustration of tensor modeling to a digital simula-

tion of the QCSE engine. For plant modeling prior to feedback control, or for representing

scheduled controllers over an operating llne, the tensor algebra offers a universal parame-

terizatlon which is helpful in conceptualization and identification. The case studied in

this paper offers support to these conclusions. Further work is in progress.
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TABLE 1 Variable Ledger for Figures 2-i0 I

O : True Engine Response i : Linear Model Response * : Nonlinear Model Response

P&GS (psi) ] x3: NL (rpm) u.: W'FM (ib /hr) u_: BETAF (degrees) I

TABLE 2 Comparison Studies

Initial State Conditions Input Amplitudes Input Freq. Error

x I x2 x3 x4 °l n2 o3 _I _2 ¢3 ¢i e2 ¢3 e4

O.000 0.000 0.0000.000

0.000

0.000

0.010

0.010

0.010

0.010

0.010

0.010

-0.010

-0.010

0.075

0.110

0.120

0.i00

0.000 0.000 0.000

0.000 0.000 0.000

0.001 O.010 0.i00

0.001 0.010 0.100

0.001 0.010 0.I00

0.001 0.010 0.500

0,001 -0.010 0,500

-0.001 0.010 -0.750

-0,001 -0.010 -0.750

0.001 -0.010 0.750

0.001 20.00 10.00

0.001 -20.00 12.00

0.002 50.00 i0.00

0.002 75,00 5.00

18.92 0.000 -0.Iii

18.92 0.000 -O.iii

7&.29 -21.20 -0.239

17.00 -2.000 -0.050

18.92 0.000 -0.Iii

!9.00 -2.000 -0.159

18.92 0.000 -0.Iii

40.00 -5.000 -0.150

-18.80 0.000 0.i15

-37,46 0.000 0.228

74.29 -21.20 -0.239

-18.80 0.000 0.000

55.78 -14.03 -O.198

37.35 -6.830 -O.159

5&.00 -12.00 -0.200

0.00.00.0

0.30.00.5

1.90.91.2

0.00.00.0

0.00.00.0

1.00.80.5

0.30.00.5

1.51.01.3

2.00.01.5

1.90.01.3

1.91.11.3

1.90.00.0

1.81.11.4

2.11.01.3

1.81.O1.3

-1,040 -O.018 -i0.40 -14.00

-0,668 -O.012 - 7.04 - 8.49

-0.259 -0,004 - 4.62 - 8.11

-0,947 -0,017 - 7.48 -11.50

-1,070 -0,019 -10.60 -14.20

-0.198 -0.003 - 2.49 - 3.16

-0,642 -0,012 - 6.88 - 8.22

-0,354 -0,006 - 1.96 - 6.69

-0.307 -0,005 - 1.71 - 4.89

-0,202 -0,004 - 1.59 - 3.42

-0,293 -0,005 - 5.89 - 6.55

-0,343 -0,007 - 3.36 - 3.43

-0,447 -0,008 - 4.98 - 5.51;

-0,435 -0.008 - 5.D6 - 4.91

-0.401 -0.007 - 9.80 - 8.801
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Abstract

In a recent publication [i], Bristol has pre-

sented an application theorist's view of process

control design as it really exists and has chal-

lenged others to do likewise for areas within their

own purview. This paper continues Just such an ef-

fort [2,3,4] by the authors within the domain of

nonlinear multivarlable control of gas turbine eng-

ines. Under examination is the fundamental notion

that linear controller descriptions, obtained from

local actions of nonlinear objects, may be recom-

bined to produce global nonlinear control action,

with sufficient integrity to effect closed loop de-

sign. Total Synthesis refers to a top-down strat-

egy of Nominal Design and Feedback Synthesis. This

paper extends the study of the Nominal Design Prob-

lem (NDP) to nonlinear eases, and presents a new

case study of robust feedback synthesis for gas

turbine control design.

Introduction

The idea of describing families of curves by

their tangents has a rich history in mathematlcs_

in science, and in engineering. Consider, by way

of example, the ubiquitous differential equation.

More generally, the notions of manifold, tangent

spaces, and geometry are very much a part of modern

multivarlable systems research.

Not surprisingly, the same notions permeate a

great deal of control design in various applications.

Intuitively, one llnesrlzes a nonlinear dynamical

system at a sequence of points along lines of oper-

ation considered desirable by the plant manufacturer.

A suitably rich sequence of points can lead to a

correspondingly valuable sequence of linear multi-

variable systems describing local gains and trans-

ient behavior of the plant along these operating

lines. From such a sequence of systems one may

construct a sequence of controllers which effect

desirable local motions along the lines. Smooth

global control is then a function of appropriately

scheduled feedforward and feedback requests, as well

as scheduling of local controller g_Ins and dynam-

ics which determine the approach to such requests.

Bristol Ill believes that experience and in-

tuition are the crucial requisites for efficacious

design, and that the best of deslgn-flavored con-

trol theories can serve only as an introduction to

the path followed bv engineers with experience. Ac-

cordingly, Bristol also suggests that one should

seek theories which extend one's intulticn and

which do not presuppose its replacement.

The local control theory employed by the au-

thors in this paper was proposed [51 in 1979 by

Pe_kowskl, Saln, and Leake, with Just such a view

in mind. Conceptually, zhe method is founded upon

the idea of a N__ominal Deslgn P__roblem (NDP), which

is Independent of controller structure and which

is intended as the first step in a top-down design

procedure. A thorough discussion is given in [6].

This paper treats an extension of NDP to the non-

linear case. Completion of step one in ADP is fol-

lowed by a second step, called the [eedback S_ynthe-

sis Problem (FSP) [6]. A case study of this step

may _e found in [7], which also contains a full

iist of references. An alliance of NDP with FSP

is called a Total S_ynthesls [roblem (TSP). The

case study following in this paper is part of a

continuing assault of FSP for the nonlinear case,

from the view of design practice in gas turbine

engine control.

The section following provides mathematical

preliminaries which precede a discussion of NDP for

the nonlinear plant. Beyond that, nonlinear nomi-

nal design is defined and characterized, after

whi=h the paper progresses Co design of local con-

trollers for a turbojet case, and the scheduling of

=hese local controls into a global control.

Mathematical Preliminaries

In this section, we consider a bijection b :

S _ T from a set S onto a set T, with T ad-

mitting the structure of an F-vector space. As a

result of the fact that b is bfJective, each

vector t in T can be represented uniquely in

the manner b(s) for an s in S; and each ele-

ment s in S can be represented uniquely by

b-l(t) for a t in T. Here, we have denoted the

inverse of b in the usual way, b -I : T _ S.

The commutative group structure (T, +, 0) on

our F-vector space T can be used, together with

b, to induce a con=nutative group structure (S, _,

e) on the set S. The first step in this construc-

tlon is to define the binary operation _ : S * S

S. We do this as follows. Let (Sl,S 2) _ S × S;

then

s I _ s 2 - b-i( b(s I) + b(s.)) ,

where the binary operation ÷ in the right member

is that on T _ T to T. Associ_Livlty of the new

operation can be demonstcated. Indeed,

(S I _ s,) _ s 3 " 5-1(b • b'l(bsl + bs2) + bs3)
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= b-l((bs I _ bso) + bs 3)

= b-l(bSl + (bs o + bs ))3

= b-l(bsl + b o b-l(bs 2 + bs3))

= sI _ (s2 _ s3) •

The unit e can be chosen to be b-l(0), as is

apparent from the calculation

s _ b-l(o) - b-l(bs + b o b-l(0))

= b-l(bs + O)

m s .

For commutatlvlty of the operation, we exhibit the

steps

s I _ s 2 = b-l(b(Sl ) + b(s2))

= b-l(b(s2 ) + b(Sl))

= s 2 _ s I •

Finally, for an element s in S, w_ define an

additive inverse g in S to be b--(-b(s)), and

verify it by

s _" _ = b-l(bs + b • b-l(-b(s)))

= b'l (0)

w e •

as desired. Accordingly, (S, _, b-l(O)) is a

commutative group.

Next, we can use the scalar multiplication op-

eration F x T -_ T on the F-vector space T tO

induce a scalar multiplication F × S -_ S. To do

this, we define the scalar multiple fs of s by

f to be

fs = b'l(fb(s)) ,

for a pair (f,s) in F x X. Notice that

f(s I Z s 2) " b-l(fb(Sl ,-_s2))

= b'l(fb o b-l(bsl + bs2) )

= b-l(fbSl + fbs_)

= b'l(b o b-lfbsl + b o b-lfbs2)

= b-l(b(fSl ) + b(fs2))

" (fsl) T (fs2) •

Moreover, we can also see tha£

(fl + f2 )s " b-l((fl + f2 )b<s))

= b-l(flb(S) + f2b(s))

w b-l(b • b-lflbS + b o b-lf,_bs)

- b-l(b(fl s) + b(f2s))

(fls) _ (f2s) •

Next, observe the property

(flf2)s = b-l((flf2)bs)

= b-l(fl(f2bs))

= b-l(fl(b . b-lf2bs))

= b-l(flb(f2s))

- fl(f2s) •

Finally,

is - b-l(Ib(s))

= b'l (b (s))

m s .

Thus, (S, 3, b-l(o)) has been developed in-

to an F-vector space S. We summarize this fact

as a theorem.

Theorem i.

Let b : S _ T be a biJection onto the F-vec-

tor space (T, +, 0). Then (S, _, b-l(o)) is al-

so an F-vector space, with addition

s I 3 s 2 = b-i(b(Sl) + b(s2)) ,

with additive inverse

b-l(-b(s))

for a vector s, and with scalar multiplication

fs - b-l(fb(s)) .

Remark

Frequently, S may be given as an F-vector

space on a commutative group (S, +, 0). Though

the set S is tom=non to these structures, the bi-

nary operations + and _ are distinct, as well

as the units 0 and b-l(o) and the scalar mul-

tiplications.

Relative to the induced space, the biJactlon

and its inverse assume desirable properties.

Corollar T 2.

Regarded as a function

b : (S, _, b-l(0)) ÷ (T, +, 0) ,

the biJectlon b is a morphlsm of F-vector spaces,

as is its inverse

b -I : (T, +, O) - (S, _, b-l(o)) .

Proof: We have only to examine the defining con-

structions
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b(s 1

-i

s2) - b o b (b(s I) + b(s2))

- b(s I) + b(s 2) ;

b(fs) - b o b-l(fb(s))

•, fb(s) ;

moreover, for each t i in T, we have a unique

s i in S such that t i = b(si); and so we have

also

b-l(tl + t 2) - b-l(b(Sl ) + b(s2))

= b -I o b(s I _ s2)

- sI E s 2

•' (b-l(tl)) E (b-l(t2)) ;

b-l(ft) . b-l(fb(s))

= fs

. fb-l(t) .

Remark

If R is a ring with identity, then all the

discussions above generalize to R-modules.

Next, denote by S R the set of all functions

from a set R to the F-vector space (S, _, e).

Under polntwise conventions,

(gl E g2)(r) = (gl(r)) 0 (g2(r)) ,

, (fg)(r) - fg(r) ,

S R becomes an F-vector space also [8], as does T R

under the corresponding operations induced from T.

The following section defines the NDP for non-

linear plants, and uses the properties above to

characterize its structure.

Nonlinear NDP

The concept of a nonlinear NDP was outlined in

[3] by the authors for functions on cotmuutatlve

groups. Here we extend the idea. Let R, U, and

Y denote F-vector spaces of requests to the sys-

tem, controls to the plant, and responses from the

plant. It is useful to visualize chose, for exam-

ple, as function spaces, predicated perhaps on time

sets. Let p : U -_ Y denote the plant. If the

feedback action of the controller is well defined,

then there will be a function m : R -_ U gener-

ating control actions from requests and a function

t : R-_ Y describing plant responses to requests.

These three functions must then be related by the

equation

t " p • m ,

which is presented as a commutative diagram in Fig-

ure I. The nonlinear Nominal Design Problem is =o

find pairs (m,t) in--(U R, yR_) such--that the dia-

gram of Figure 1 commutes. As usual, we point out

/

/
/

m/
/

/

U

R

/ k
k

\
\t

\
\

>Y

Figure i. Nonlinear N'DP.

that NDP is not a model matching problem, in which

t would also be given and in which only m in

Figure 1 would appear On a dashed line.

Now consider a pair (mi,ti) of solutions to

NDP. Characterization of the set [(ma,t )} of

all solutions to NDP is severely hindered by the

fact that

p , (m I + m2) # (p . ml) + (p o m2) .

With the ideas of the section preceding, however,

this difficulty can be addressed.

Let (Y, ÷, O) denote the F-vector space of

plant responses, and let (R, +, O) denote the

given F-vector space of requests. If p is a bi-

jeetion, we can develop on U the F-vector space

structure (U, _, p-l(0)) of Theorem i. Relative

to this structure, p and p-i : y _ U become_

isomorphisms of F-vector spaces. Moreover, (U _,

_, e R ) and (T R, +, O) become F-vector spaces,
U

wlch

CuR(r) " p-l(o )

for all r in R; and O(r) - 0 in T for all

r in R. We can then define the F-linear map F :

U R × T R _ T R by setting the action

F(m,t) o p . m- t .

This leads to the following result.

Theorem 3.

Let p : U _ Y be a bijection onto the F-vec-

tor space (Y, +, 0). Then a pair (m,t) is a

solution to the nonlinear Nominal Design Problem if

and only if

(m,t) ¢ Ker F .

Proof: The assertion is immediate. It may be

worthwhile, however, to point out the F-vector pro-

duct group structure on U R × T R defined by the

operation

(ml'tl) * (m2't2) = (ml _ m2' _i + t2)
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Remark

If one wished, he or she could assume vector

space structure on U, and define a special bi-

nary operation __ on T × T by p(p-l(tl) + p-i

(t2)).

Remark

An Inverse nonlinear NDP, denoted INDP, can

be defined from the equation

-i
m - p o t .

Remark

Suppose that p were only surJectlve. It

follows that p induces natural equivalence clas-

ses on U; and a projection _ : U _ U/E can be

defined. Then one has the universal factorization

p=p_

for a unique p : U/E _ Y, which is a bijection.

The structure (U/E, Z, p-l(0)) can be developed,

and l_P pursued again. Only equivalence classes

of controls are determined.

The existence of plant inverses is of the

first importance both in theo_' and in application

design. In the next section, we examine briefly

the turbojet engine model which will be used for

our case study.

Nonlinear Turbojet Model

A nonlinear model of a simple turbojet engine

is shown in Figure 2. It is representative, on a

small scale, of the kind of nonlinear plant with

which designers of turbine engines and turbine

controls deal currently in practice. In essence,

it is a computer simulation, typically constructed

by engine manufacturers and provided to control

manufacturers. The nonlinear turbojet model con-

sists of three integrators, nlne nonlinear func-

tions, including five bi-variant functions, nine

multipliers and dividers, and nine summing Junc-

tions. The model describes nonlinear dynamical and

steady state relationships between three inputs:

fuel flow, Wf, exhaust nozzle area, Aj, and

turbine vane position, B, and slx outputs: eng-

ine speed, N, turbine temperature, T4, engine

thrust, FN, tailpipe pressure, PS, and two

other outputs. We propose to think of the nonlin-

ear simulation model as a nonlinear functlon p

from a real vector space of control functions of

time to a real vector space of plant response func-

tions of time.

Locally, with appropriate technical assump-

tions, the nonlinear plant function can be approxi-

mated by a linear_map P : U _ Y, in the neighbor-

hood of a pair (u,y) in the relation defined by

p. When the plant function p is a linear map P,

the transformation

p-l(p(ul) + P(u2)) = u I + u 2 ,

for the usual vector space structure (U, +, 0).

Locally, then, the operation Z : U x U - U can

be replaced by + : U × U _ U.

Suppose next that the plant has an internal

representation

- f(x,u) , y = g(x,u) ,

with appropriate smoothness conditions associated

with the functions f : X × U _ X and g : X × U

Y. Let x be such that

f<_,_)- o ,

and define

_y = y - g(x,u) , _u = u - u .

Then p may be assumed to have a local representa-

tion given by an impulse response operator

C eAtB + D

or by its transform, say P(s), in the usual way.

The idea is to use these P(s) to determine

corresponding local descriptions of the parts of

the controller, and then to schedule these parts

together into a _lobal whole.

Remark

In addition to the case study which follows,

an accompanying paper [9] discusses some additional

conceptual issues associated with such schedules.

For the following case study, three outputs

have been selected for control: engine speed, N,

turbine temperature, T4, and engine thrust, FN.

The nonlinear engine model was identified locally

at five conditions corresponding to 70%, 80%, 90%,

I00%, and 110% speed levels. The engine input is

given by

u - (Wf, Aj, B) ,

and the selected engine response vector is

y = (N, T4, FN) .

By way of illustration, at 100% speed conditions,

the plant transfer function P(s) and its inverse

were found to be:

p(s)-

52.4(.01s*1) 56.1(.01s+I) -2704(.01s÷1

.13(1.5s÷!) -2.7(.50s+1)(.O1s+l) 336(.31S+I

.4(.29s+I) 68.3{.42s+l}(.Ols+l) g51(.Ols+ll

(.50s+1)(.O1s+l)

p(s} "1 •

.i8(.23s+l)(.ols+l) 1.7(,31s_l)(.OO7s+l) -._](.91s*l

-.OCS(-._s+|) -,381.01s.1} .ols<Ols.::I

llOOOIC.7_$+I)(.OI$+I} .0017(.015o1)(.013s+I) .00015(.)I:+i

(.O09s+l)
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Figure 2. Nonlinear Turbojet Model.

Multlvariable Design

A nonlinear multlvariable design method, based

on Total Synthesis ideas, is described and illus-

trated. Features of the design method include:

i. an input-output viewpoint;

2. design for desired response performance; con-

trol performance, and sensitivity;

3. a relatively general system structure;

4. a systematic way to synthesize the nonlinear

controller.

Starting point for the design procedure is a

nonlinear plant model or simulation such as the

turbojet engine model shown in Figure 2. First,

it is necessary to es_abllih the desired steady

state operating conditions of the plant and deter-

mine available plane inputs and plant outputs.

Identification of the nonlinear plant along select-

ed operating lines then can provide local plant

dynamics and a see of plant transfer function ma-

trices P(s) relating inputs and outputs.

Possibilities for control of plant outputs

using available inputs can be checked by choosing

subsets of square matrices of the plant transfer

function matrix and determining the existence and

condition of the corresponding plant inverse ma-

trices. Existence of the plant inverse wlth good

condition is necessary and vital to obtain reliable,

independent control of selected outputs with avail-

able inputs [lO-15].

Linear Design

A general linear system structure which com-

bines TSP ideas with the idea of Comparison Sensi-

tivity was presented and discussed in [4] and is

shown in Figure 3. This system structure provides

coordinated feedforward inputs u and loop com-
r

mand requests Yrc

Yr

Ur

Yrc _UTL +u _Y

Figure 3. Robust Controller Structure.

to a closed loop control system. The feed-

forward elements coordinate request commands Yr;

the closed loop assures steady state tracking and

robustness of the outputs, y. The desired over-

all system response is designated by T. The

chosen response of the loop is denoted by T L.

Important controller elements of the struc-

ture are G, H, and M, which must be designed

in an acceptable way so as to produce T and T L

within specifications. It turns ouE that three

key equations govern local design:

M = p-IT (I)

= p-IS[ITL (!I)G

H " TLI(I-SL ) (III)

Equation (I) is called the synthesis equation. It

is used to display all admissible responses (T,M)

and (TL,_). Equations (If) and (III) are design

equations for the forward dynamics G and the

feedback dynamics H, respectively. Note that all

control dynamics are defined by selection of M, T,

T L and the comparison sensitivity S L. The sen-

sitlvity S L is defined [16,4] by (I + PGH) -I.

These equations provide a basis Co design linear

control systems directly by specifying local re-

sponse and sensitivity performance.

Nonlinear Design

As observed in the Introduction, the idea of

describing families of curves by their tangents has

a rich history in mathematics, in science, and in

engineering. The method of phase plane portraits

was already well developed more than two decades

ago [17]. In more modern terms, we say today that
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state space descriptions, by ordinal, differential

equations, coincide with vector fields on manifolds

[18]. Solutions on the manifold are curves tan-

gent to the vectors of the field.

k_at about nonlinear design? The fundamental

notion used in this paper is that linear descrip-

tions, obtained from local actions of nonlinear ob-

jects, may be combined to produce nonlinear action,

with sufficient integrity to effect closed loop

control. For example, if a set of local designs

has given rise to a family {G(s)} of forward dy-

namics in the loop, then the goal is to link mem-

bers of the family together so as to produce a

nonlinear function g, that is {G} _ g. Now

each G may be regarded as giving a local approx-

imation to a part of the vector field. Under re-

asonable conditions of smoothness, and with enough

members in the family, a careful linking could in-

deed lead to useful g, over regions of interest.

To extend this notion, one can consider

choosing, along an operating line, sets of de-

sired system responses {M,T}, loop responses {ML,

T }, and sensitivities {S.}. From these perfor-

mance choices, sets of controller matrices (M},

{G}, {H}, and {HT} can be generated via equa-

tions (1), (If), and (III). All of the linear

sets may be linked and scheduled as a function of

plant condition to form nonlinear control elements.

Thus (T7 _ t, {M} _ m, {G} _ g, {H)- h, {HT}

h°t.

Desired steady state operating schedules,

transient control means and protection limits are

also needed to provide other practioal and func-

tional features for a nonlinear turbojet engine

control system. These features transform the

linear system structure in Figure 3 to the non-

linear system structure shown below, in Figure 4.

Figure 4. Nonlinear Control System.

The structure embodies key relationships of the

Total Synthesis viewpoint and provides other basic

features needed for full range, nonlinear control.

It is used in the design examples which follow,

Desisn Examples

In this section we illustrate the foregoing

synthesis ideas by designing a control system for

the nonlinear turbojet engine described in Figure

2. Recall that the turbojet has three inputs:

fuel flow, Wf, nozzle area, Aj, and _urblne vane

angle B; therefore, three outputs: engine speed,

N, turbine temperature, T4, and engine thrust, FN

were selected for control. We want to execute de-

signs to achieve specific, beneficial output re-

sponse strategies and show the effect that sensi-

tlvlty specifications have in resisting plant

parameter variations. Results are illustrated by

time response traces for small step co.ands and

by full range acceleration and deceleration trans-

ients.

Performance Specifications

Design a multivarlable control system for full

range acceleration and deceleration capability a-

long the steady s_ate schedules so that complete

transients are completed in less than three sec-

onds. Small signal responses of the system are

desired to produce: i) fast thrust response; 2)

smooth, gentle temperature response; and 3) con-

venient speed response. All should take place

without overshoot and without steady state error.

These requirements translate into the follow-

ing kinds of response and sensitivity specifica-

tions:

I. Track output schedules with zero s_eady state

error.

2. Accelerate or decelerate from 70% to 100% speed

levels in less than 3 seconds.

3. Local System Responses (T) - Decoupled

Speed - .5 second lag @ 70% speed

.2 second lag @ 100% speed

Temp. - .5 second lag - constant

Thrust .2 second lag - constant.

4. Local Closed Loop Response (T L) - Decoupled

.2 second lag constant for all outputs.

5. Local Sensitivity (SL)

a) Unit'/ feedback: S L = (I-TL) ;

b) Ten times better than unity feedback.

The following response and sensitivity matrices at

100% speed condition were obtained:

i I 1

T " diag ( 2s_-l' .5s+l' _)

TL= diag (- 1 1 ! )
.2s+l' .2s+l' .2s+l

.2s .2s .2s

St= diag (.2s÷l' .2_I' .2_-_) (H-I)

S L- diag ( .02s .02s :02s
.02s+l' .02s+l' .02s+l"

The forward control dynamics G(s) at 100%

speed condition with unity feedback are:

G(s) -

. .90(.23S+i) 8,5(.01s+i) -.42(.Ols+lq

-.025(-.2s+i) -.40(.01s+I) .075(.01s+I

.0005(,74s+i) .0085(.013s÷I) .0008(.01s+I)]

s(.Ols+l)

Controller elements M, C, H and HT were

calculated at five engine speed conditions. These

sets were scheduled as a function of engine speed
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o

to form nonlinear control system elements m, g, h

and h o t. For example, the form of the nonlinear

controller g so constructed is shown in Figure 5

below.

LN

,

.LWf

Figure 5. Nonlinear g.

Simulation Results

Small step transients of the nominal engine

with sensitivity feedback system are shown in Fig-

ure 6. The output responses verify desired small

signal performance: thrust response is fast (.2

second lag); temperature response is smooth (.5

second lag), and speed response varies from .5 sec-

ond lag at 70% :o .2 second lag at 100% speed con-

dition. Corresponding input responses are shown

in Figure 7.

Full range acceleration and deceleration tran-

sients of the nominal engine with sensitivity feed-

back system are shown in Figure 8. The outputs

track the requests without overshoot and =he trans-

ient time is less than =hree seconds. Correspond-

ing input responses are shown in Figure 9. All

inputs are within desired limlts.

To show =he effect of sensitivity specifica-

tion on plant parameter variations, the time cons-

tants of the engine affecting speed, temperature

5_
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Figure 6. Outputs.

Nominal Engine; Sensitivity F/B.
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Figure 7. Inputs.

Nominal Engine; Sensitivity F/B.

and tail pipe pressure response were all doubled.

This produced a nonnominal engine.

Small step responses of a nominal and non-

nominal engine with unity feedback control are pic-

tured in Figure lO. Deviations from desired output

responses are caused by the engine parameter vari-

ations.

Imposing a sensitivity specification which is

effectively ten times better than the unity feed-

back design produced feedback dynamics H - diag

((.2s+l)/(.O2s+l)). Step responses for the sensi-
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Nominal Engine; Sensitivity F/B.

tivit7 feedback design with both the nominal and

nonnominal engines are shown in Figure Ii. Devia-

tions due to engine parameter variations are vir-

tually eliminated.

Full range acceleration and deceleration tran-

sients of the sensitivity feedback controller with

both nominal and nonnominal engines are shown in

Figure 12. The sensitivity deslgn feedback con-

troller maintains full range output transients es-

sentially at nominal conditions, successfully hand-

ling plant parameter variations.

55o0
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Figure i0. Outputs; Unity F/B.

Nominal and Nonnominal Engines.
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Figure ii. Outputs; Sensitivity F/B.

Nominal and Nonnominal Engines.

Su.nunarz Remarks

A nonlinear control synthesis method based on

TSP viewpoint was discussed and illustrated. A

three input/three output turbojet engine example

demonstrated a feasibility to achieve desired sys-

tem response and sensitivity specifications.

A concept of the nonlinear Nominal Design Prob-

lem (NDP) was presented and discussed, extending

and building on earlier Total Synthesis Problem

(TSP) theory and ideas. Additive structure was ob-
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Nominal and Nonnominal Engines.

rained by a process of inducing a special binary

operation on the control input space. Though not

a new mathematical idea [18], this concept seems to

fit constructively into current design developments

in nonlinear control.

Research to develop nonlinear control synthe-

sis methods is needed. It is felt that the input-

output TSP vie, point offers possibilities to devel-

op useful, systematic and straightforward methods

for nonlinear mul=ivariable control synthesis.
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NONLINEARMODELINGOF A TURBOF_tNJET ENGINE:

A TE_:SORMETHODAPPLICATION

Abstract

by

ThomasA. Klingler

L

i

.r__

Demand for reliable nonlinear model generating techniques in industry

has risen in recent years, in part because of increasing plant complexity

and in part because of requirements in control system design. Practical

examples of the use of nonlinear models are provided by gas turbine engine

control systems, which are inherently nonlinear. This thesis summarizes

an investigation focused on the use of one such modeling technique which

incorporates algebraic tensors in power series truncation approximations.

Emphasis is placed on the application of these ideas in nonlinear model

generation using a real-time digital turbofan engine simulation. Included

in the discussion is an interactive computer-aided design package for the

generation of such models. This package, which uses two independent com-

puting systems, is designed to accommodate the overall process of model

formulation, identification, and validation for any particular nonlinear

modeling problem when developed within the framework of the tensor scheme.

i
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•\ COMPUFER-AIDZD DE_IG:; PACKAGE

FOR ::CNLINL_R XODEL APPLICATIONS _

T.A. Klingler, S. Yurkovich, and M.K. Sain

Department of Electrical Engineering, University of Notre Dame,

Notre Dame, Indiana 46_56

Abstract. An important aspect of multivariable control system design in-

volves the formulation of reliable mathematical models. Gas turbine engine

control systems, with their inherent nonlinearities, provide common practic-

al examples of the need for nonlinear models. In this paper we discuss a

computer-aided design package for generation of such nonlinear models, using

an approach involving notions of power series and algebraic tensors. Two

independent computing systems are employed interactively in the overall pro-

cess of model formulation, identification, and validation. The package is

sufficiently generalized to acco==_odate any partIcula[ nonlinear modeling

problem when formulated within the framework of the algebraic tensor scheme.

Ke_ords. Computer-aided system design; multivariable control systems; mod-

elling; tensor algebra; nonlinear systems; algebraic system theory.

I.X-fRODUCTION

Models have always been an important aspect

of applications engineering in zhe area of

mul_ivariable control system design. See

for example the work of Kreindler and

Rothchild (1976). Practical and industrial

examples of the use of models are provided

by gas turbine engine control systems, which

=o_monly use models to generate control and

response trajectories for various power de-

mands. These models, when scheduled over

the operating envelope, can reduce the com-

pensation normally required of the control-

ler, and thus provide the feedback loop with

an opportunity to achieve better accuracy in

the presence of noise and parametric uncer-

tainties.

The scheduling of feedforward models and

feedback compensation typically produces

nonlinearities, even if the local models are

linear. Accordingly , there is basic inter-

est in fundamental approaches which Incor-

porate nonlinearity at the outset. Such ap-

proaches should (i) reduce to the earlier

linear schemes for variables with small ex-

cursions, (2) be amenable to scheduling, and

(3) offer opportunities for determination of

parameters from simulation data.

One such approach, investigated by Yurkovioh

and Sain (1980) and Klingler, Yurkovich, and

Sain (1982), uses the notions of power ser-

ies and algebraic tensors (Saln, 1976) to

generate a class of nonlinear models. The

important feature of the algebraic tensor is

that it provides an organized way of de-

*This work was supported by the National

Aeronautics and Space Administration under

Grant NSG 3048.

scribing the power series expansion formula,

lending itself with relative ease to pro-

gramming on a digital computer. Furthermore,

its use allows for =he implementation of

linear parameter identification techniques.

This paper reports on the develo--ent o# _n

interactive computer-aided design package

for the formulation, identification, and

validation of one particular model stru¢zure

which uses the above-mentioned tensor appr=-

ach. The sofvware package, developed usin_

the extensive capabilities of =he IBM and

DEC Command Procedure Languages with the

strengths of FORTRAN and SPL_iEASY, is di-

vided into two segments and tailored to

utilize existing computer hardware effec-

tively, as well as to provide the fastest

possible user turnaround time. The inter-

active nonlinear model generation segment

is implemented on a Time Sharing Option

(TSO) of the IBM 370-168 computer system,

where the memory dependent and highly com-

putational routines of the package can bene-

fit from use of the virtual memory and float-

ing point hardware. Once a structured non-

linear model is identified, it is then

transfered to the DEC PDP 11/60, where in an

interactive environment it can be analyzed

and compared to a linear model as well as

the true system. In this manner, the user

has at his disposal both =he graphics capa-

bilities of the video terminal and an elec-

trostatic prlnter/plotter for the immediate

display of data and comparative trajectories.

The remainder of the paper is outlined as

follows. First, we briefly discuss notions

from analysis and algebra which form the

foundation for the tensor approach used in

the model formulation. A de=ailed discus-

sion of =he interactive design package is
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then given, followed by a brief discussion

of the computational aspects re_arding

floating point operations in the model sim-

ulation phase. We close with an example

problem from a turbofan jet engine simula-

tion.

NONLINEAR MODEL FOP_MLq.ATION

Prior to proceeding to the description of

the computer-aided design procedure in the

modeling scheme, we outline here some of

the prerequisite mathematical issues in a

coordlnate-free development. Since the

treatment is brief, the reader may wish to

consult Dieudonne (1960) and Greub (1967)

for complete expositions of the topics dis-

cussed herein•

Tensor Ideas

We begin with a discussion of abstract der-

ivatives and the calculus of normed vector

spaces. Let V and W be normed vector

spaces and let Z be open in V. Suppose

that f : Z + W is differentiable at a

fixed point p in Z. Then the derivative

of f : Z + W at p is a mapping

(Df)(p) : V + W (i)

where

Df : Z -_ L(V,W) ; (2)

that is, the derivative mapping in Eq. (1)

is an element of the real vector space of

_ne_ mappings from V to W. Higher or-

der derivatives are defined recursively as

(Drf)(p) = (D(Dr-lf))(p) , (3)

for the positive integer r, provided that

the (r-l)st derivative is differentiable.

Moreover, higher order derivatives are them-

selves linear mappings according to

D2f(p) _ L(V,L(V,W)) ,

D3f(p) ¢ L(V,L(V,L(V,W))) , (4)

If L(vr;w) denotes the real vector space

of r-llnear mappings from V r to W, it

can be shown that there exist isomorphis m"

L(V2;W) - L(V,L(V,W)) ,

L(V3;W) + L(V,L(V,L(V,W))) , (5)

so that the rth derivative of f at p can

be regarded as a mapping from V r to W.

We suppress this isomorphism and consider

Drf(p) as an element of L(Vr;W).

We now use this multilinearity of the deriv-

ative mapping to make a connection with no-

tions from algebraic tensors. Let (_rv,_r)

be a tensor product for r copies of V.

Recall thau by the unique factorization 7r;-

perry of the tensor produc_, for every map-

ping . .' _,r+. W in L(vr;w) there exists

a mapping '< : ®rv + W in L(erv,w) such

that _ = _ ° @r for _r : V r + _rV in

L(Vr;erV). Furthermore, the implication of

the unique factorization property is that

L(_rv,w) -_ L(vr;w) (6)

is a vector space isomorphism. Thus, via

the isomorphisms of Eqs. (5) and (6), the

r-llnear _pplng Drf(p) : V r -_ W can be

composed from a linear mapping _rv -_ W and

the universal r-linear tensor product map-

ping ®r : V r ._ _rv.

State Description

The ideas discussed above are now used to

formulate the model structure for a given

nonlinear system. We consider systems whose

states and inputs are elements of the normed

real vector spaces X and U, respectively,

and which may be described by the nonlinear

ordinar7 differential equation

- f(x,u) <7)

for f : X _ U -X. Let (x,u) be a fixed

point in Z open in X _ U, and suppose

that f : X _ U-_ X is of sufficient smooth-

ness on Z. Formally,

i

= [ _ (Dkf)tx,u)(x,u)(k)'--f (x÷x,u+u)

k_O i8 )

where (x,u) (k) - ((x,u),(x,u) ..... (x,u)) k

times. Due to space limitations we cannot

address existence or convergence questions

relative to Eq. (8). We note, however, that

this series could be replaced by a finite

number of terms together with a remainder

term in a standard application of Taylor's

formula.

According to the preceding discussions "*e

now make the unique factorization

k - - k

D f(x,u) - Lk(X,]) o e , <9)

where L+ (x,u) : ® (X × U) X is _inear.

Denote t_e k-fold tensKor product of (x,u)
with itself by (x,u) so that, with Eq.

(9), we have

1 - - .k
f(x+x,u+u) - [[., Lk(X,U)(X,U) .(!9}

k-O

Sain and Yurkovich (1982) have shown that

the individual terms in the series of Eq.

(lO) may be re%rritten as, for example in the

case of k - 2,

i - -
-5-F L2(x,u)(x,u)2 " L20 x _ x

4-

LII x ® u ÷ L02 u • u , <!i)

';here we have suppressed the notation ,)f

(x,u) on the right side of Eq. (Ii). In

this :_ay Eq. (8) becomes
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L

f(_+x,_u) - > 7 L x i _ uj

i=O j=O _J (12)

forming the structure for the nonlinear mod-

el.

Application

In practical applications a truncation ap-

proximation of the series in Eq. (12) is

considered. In terms of computing, then,

the task in the model building scheme is to

identify the parameters contained in matrix

representations of the Lij _ Ordered bases
in X, U, X _ X, X ® U, anu so on, are

chosen a priori to be used in constructing

a linear least squares identification prob-

lem. The ordering algorithm (Yurkovich,

1981) which facilitates this procedure,

used in the interactive software package de-

scribed herein, is easily implemented on a

digital computer.

In practice, a differential equation descrl-

ption of the nonlinear system may or may not

be available. In either case, the basic

strategy involves initial condition and con-

trol signal design so that, through data

sampling and derivative estimation, a model

of the original system of Eq. (7) may be

identified. The nonlinear model is required

not only to outperform a standard linear

model locally about an expansion point, but

to establish a larger region of model val-

idity as well.

CA _N.AP

The intent of this section is to present a

detailed discussion of the C_omputer-Aided

_ensor _onlinear Modeling_pplications _ack-

age (CATNAP) currently used as a development

tool in the formulation, identification, and

validation of nonlinear models of the type

mentioned above. The structure of CATNAP

is based upon ideas from distributed proces-

sing and local networking (Tanenbaum, 1981)

in which computations are spread over mul-

tiple machines. More specifically CATNAP

is divided into two segments, each of which

is implemented on an independent computing

system. These segments are entitled GENER-

ATE and SLMULATE. GENERATE is implemented

on a Time Sharing Option (IBM, 1975) of the

IBM 370-168 mainframe computer and is used

to formulate and identify models, whereas

SIMULATE is implemented on the DEC PDP 11/60

computer system and is used to study model

validity and performance. Furthermore, both

of these segments are highly interactive and

contain straightforward input prompts as

well as informative error messages.

GENERATE

The GENERATE segment of CATNAP is primarily

made up of three routines governed by a

higher level supervisor. Figure i contains

a block diagram depicting the structure of
GENERATE.

GENERATE Supervisory. This supervisor7

level is written using the command procedure

language CLIST (IBM, 1976) and performs the

following main functions in sequence:

(1) prompts the user for the name

of the desired loader routine

to be executed;

(2) passes control to the loader

routine defined in (i);

(3) passes control to IDLNTIFY;

and,

(4) upon user request, passes con-

trol to TRANSFER.

In addition to these main functions, cer-

tain maintenance roles such as file crea-

tion, allocation and deletion are handled

by this supervisor.

GENERATE

/I
I:i- IDI
\/\
ITEMPFILE I

l

TRANSFER

I IMODEL To

PDP Ii

Fig. i. Block diagram for the CATNAP

segment GENERATE.

Loader Routine. Associated with each non-

linear system to be modeled, =here exists a

loader routine which performs the model

formulation task. These routines are

stored in a library and are typically writ-

ten in double precision FORTRAN.

The purpose of any loader routine is to ex-

cite the given nonlinear system via initial

condition and control input perturbations

and to sample the states, inputs and deriv-

ative estimates over h selected points in

time. The system is then represented by the

matrix equation

- [LIo eOl e20 Ell L02 e30 .'-] _ "

nxh pxh

nxp (13)
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The first n_-_ rows of the matrix X T are

formed from :he sampled values of x and

u; the remaining p-(n+:n) rows are formed

according to the ordering algorithm prev-

iously mentioned, which minimizes the num-

ber of computations. X is formed by load-

ing derivative estimates for il,i2 .... ,i n

at the h time points. The number p de-

pends on n and m, and the degree of the

truncation approximation. All this data is

then stored in TEM/_FILE for later use.

Using this approach, CATNAP can accommodate

any particular nonlinear modeling problem

since the problem specifics are transparent

to the remainder of the package. The only

requirement is that TL-MPFILE contains the

appropriate data.

IDENTIFY. After the completion of any

chosen loader routine, the program IDENTIFY

is executed. IDENTIFY reads the interim

data from TLMPFILE and forms a least squares

minimization problem which is solved for the

partitioned matrix containing the desired

Lij parameters. These Li=j parameters are
recorded at the terminal as well as entered

into the MODEL data file.

It should be noted here that IDENTIFY is

written in the high level language SPEAKEASY,

which is based on the concepts of arrays and

matrices and processes these as entities.

This results in the elimination of the many

loops necessary in other programming lan-

guages. See the work of Cohen and Fieper

(1979). The main reason for employing

SPEAKEASY here is that the highly efficient

routine SII_QUAT can be easily used to solve

the least squares problem via singular value

decomposition, thus reducing the apparent

complexity of the problem to a minimum.

TRANSFER. Upon a yes response to a super-

visory prompt, the program TRANSFER is sub-

mitted batch to the IBM 370-168. TRANSFER

is merely a Job Control Language (JCL) deck

which sends a copy of the file MODEL, con-

taining the Lit parameters, to the DEC

PDP 11/60 computing system by the way of a

Remote Job Entry port, and stores it in the

nonlinear model library. An excellent ac-

count of JCL can be found in Brown (1977).

S IMULAT E

Shif=ing our concern away from the discus-

sion of GENERATE, we now focus our atten-

tion on the SIMULATE segment of CATNAP.

Basically, two routines plus a supervisor

comprise the structure of SIMULATE. Figure

2 offers an illustration of this structure

to supplement the following presentation.

SIMLrLATE SuDervisorv. Written in the form

of an Indirect Command File (DEC, 1979),

this supervisor allows the user to:

(i) create new simulator routines;

(2) execute existing simulator

routines; and,

226

i!> execute VERSATEC which pro-

duces hardcepy plots.

As earlier, this supervisor performs a num-

ber of file maintenance duties in addition

to the above functions.

From

370

I

model _[I

,,_

SIMULATE ]

/ "-...

model \I\II SPOOL

Fig. 2. Block diagram for the CATNAP

segment SL._bq.ATE.

Simulator Routine. A FORTRAN simulator

routine usually exists for each nonlinear

modeling problem studied; however, only one

subroutine in that program is altered among

versions, and that is the application sub-

routine TRUES. The remainder of the pro-

gram stays unchanged. TRUES contains the

true system representation of the nonlinear

system being modeled, and is used exten-

sively in comparison studies. Because of

the numDer of TRUES subroutines that exist,

a llbramf has been created to store the

various simulator routines.

The execution of a particular simulator

routine can be divided into three steps:

(I) problem configuration; (2) systems in-

tegration; and (3) solution display.

The first of these steps requires the user

to decide which of the available systems,

true solution, linear model and/or nonlinear

model, should be included in the session

configuration. When a model is chosen, the

user is asked to enter the name of the de-

sired model. That model is then read into

the simulator from the appropriate library.

The linear models used in CATNAP are gen-

erally identified by standard =echniques

and are available for use in comparison

studies.

Next, the user is prompted for various in-

segration Darameters such as stepsize and

upper time limit as well as initial condi-

T
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=ions, input amplitudes _nd frequencies.

The configured systems are then integrated

and the solutions are sampled at i00 points,

evenly spaced in time.

Finally, to assist in the data analysis, a

number of options are available to the user.

They include:

(I) printing the solutions on

the Versatec;

(2) displaying the comparative

trajectories on the Tektronix

graphics terminal;

(3) writing the trajecto_: solu-

tions =o SPOOL for hardcopy

plotting at a later time; and,

(4) solving the configuration for

another set of initial condi-

tions and control inputs.

The use of these options provides a powerful

yet flexible capability for the study of

model performance and validity. Further-

more, when all three systems are included

in the configuration, an additional error

criterion is generated and used in testing

the performance of the nonlinear model ver-

sus that of the linear model.

Let e_ denote the absolute maximum error

in the nonlinear model solution, as compared

to the true simulation solution, over the

time range of simulation for the ith state

variable. Similarly, we define s_ for the

linear model error. Then £i is the com-

parison _ - £_. Thus, if _i is negative,

the nonlinear model has exhibited a smaller

maximum absolute error in the ith state, and

in that sense has outperformed the linear

model.

VERSATEC. The routine VERSATEC, written in

FORTRAN, reads the trajectory solutions from

SPOOL and records a= the Versatec printer/

plotter, a data sheet corresponding to each

plot set which follows. The comparative

trajectories themselves are =hen plotted.

MODEL SLMI/LATION

In this section we comment on :he efficiency

of the model structure discussed above by

studying the number of floating point oper-

ations (FLOPs) necessary, in V1pical simu-

lations. It is common practice in computer

architecture =o design processors which re-

quire no extra time for floating point ad-

ditions calculated simultaneously with mul-

tiplications. Thus, we concern ourselves

primarily with the latter, and by FLOPs we

will mean multiplies. Since the largest

'burden of the computer in the simulation

process is the actual numerical integration

of model differential equations, we will

analyze only that portion of the simulation.

The system to be considered takes the form

of Eq. (13), or
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•x= Lz ,

where x is the n-vector of states, L the

parameter matrix, and z the p-vector of

ordered monomial terms derived from the

various symmetric products of x and u,

the m-vector of inputs (Yurkovich and Sain,

1980). The least n_mber of multiplications

required to construct z is merely p-n+m,

or the total number of terms which involve

products. This number is given by

-d I(n+i_l)i _ (m+i-l)l
p- (n+m) 1

i2

i-1 m+<i_j)_l_ _ } ,+ [ _ " (i-j) "(_+-1)]
J-1

where d is =he model degree.

Assuming the use of a fourth-order integra-

tion routine, the number of FLOPs necessary

=o formulate and integrate the system as em-

bodied by the model, across one integration

time step, is 4(n)(p). As an illustration

consider a four-state, three-input model. 1

Suppose, for simplicity, that 100 integra-

tion time steps is the equivalent of one

second in real time. This translates

roughly to 0.25 million FLOPs per second

for a degree-3 model (an approximation which

retains terms up to and including the third

degree). While there are many other obvious

considerations involved in real time simu-

lation, this number is well within the

bounds dictated by state-of-the-art compu-

tation speeds of ten million FLOPs per

second.

EXAMPLE

In the example to follow attention will cen-

ter around NASA's QCSEE ("Quixie")---_uiet,

_lean, S horthaul E_xperimental _ngine. Wise

(1974) provides an excellent overview of the

QCSE engine program. QCSEE is designed

specifically for powered-lift, short-haul

aircraft, and incorporates several new con-

cepts not all currently used on turbofans

to achieve operational efficiency in a

quiet, clean manner.

OCSEE APPLICATION

For =his nonlinear modeling problem, a com-

plex eight-state, _hree-control digital

simulation of the QCSE engine is employed

(Mihaloew, 1981). Using this digital deck

as the system representation, a loader rou-

tlne, QCSELOAD, is constructed to formulate

a reduced order four-state, three-control

analytical model. The engine states chosen

are the combustor discharge pressure (P4GS),

the core nozzle pressure (PgGS), the fan

speed (_'_L), and the compressor speed (h_).

The control inputs used are the fuel flow

iThis represents a typical model as inves-

tigated by Klingler, Yurkovich, and Sain

(1982).



(WFM),theexhaustnoz=learea(AI3)andthe
fanpitchangle(BETAF).In a similarway,
thesimulatorroutineQIXSIMis built using
QCSEEasthetrue_ystemin thesubroutine
TRUES.

Fortheresultspresentedherein,twomodels
havebeenformulatedusingQCSELOADat 92%
powerdemand:asecond-degreenonlinear
model,anda first-degreelinearmodel.
BothformulationsaremadeusingI%steady
stateperturbationsin thestateandcontrol
variables. Furthermore,thecontrolinputs
aremanipulatedsothat cosinusoidalsignals
areinserted. Theobserved states and in-

puts are sampled over a six second interval,

and the difference between these values and

the corresponding equilibrium values, to-

gether with the ordered tensor produc_ terms

and state derivative values comprise the

data necessary for the identification. The

model parameters are easily computed from

IDENTIFY and then sent to the PDP 11/60 via

TRANSFER.

Using the capabilities of QIXSIM and VERSA-

TEC, several validation studies have been

completed to date, all yielding satisfactory.

results. Figures 3-7 contain a representa-

tive plot se_ from VERSATEC illustrating the

model performance for a particular input

set, as well as the graphical capabilities

of CATNAP. Table i contains a variable led-

ger for Figures 3-7.

CONCLUSION

The importance of nonlinear modeling in mul-

tivariable consrol systems could hardly be

overemphasized. And the applications side

of the problem has benefited greatly with

the advent of expanded and more versatile

computing environments.

Rarely does it happen, though, that one com-

puting system can accommodate all requ_re-

men_s placed on it, particularly when pla-

gued by multiple users demanding unlimited

access. It often happens, however, nha_ the

capabilities of several computing systems

are at ones disposal, each with various fea-

tures to offer. In this case schemes em-

ploying the notions of distributed proces-

sing and local networking become extremely

useful.

We have presented one such scheme in the

form of an interactive computer-aided de-

sign package for a specific nonlinear model-

ing problem. The software package facili-

tates the analysis of complex problems, with

relative ease to the user, from the initial

model formulation and identification stage

through to the model testing and validation

studies. Series ideas and algebraic tensors

are the main vehicles in the model formula-

tion. The importance of the tensor approach

lles in its parametric possibilities, and

ongoing research is currently underway to

exploit further the richness of such struc-

tures.
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TABLE 1 Variable Ledser for Fisures 3-7

o : True Engine Response

A : Linear Model Response

* : Nonlinear Model Response

Xl: P4GS (psi)

xo: PSGS (psi)
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x4: NH (rpm)

Ul: W'FM (Ibm/_r)

u2:AI8 (in)
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• ,****o..*.*.** PROBLEM SUMMARY *'*_'''''***'''

CONFIGURATION: TRUE. LINEAR & NONLINEAR

NUMBER OF STATES: 4

NUMBER OF CONTROLS: 3

LENGTH OF TENSOR TERM VECTOR: 35

DEGREE OF APPROXIMATION: 2
*et**mim.tt*oei,m*t*e*o**eme.*QQwtt**t.*.t*ttt*

SOLUIION PARAMETERS:

• •• •mR* •• e •*• t •.et•*

INTEGRATION STEPSIZE: g.gIg

UPPER TIME LIMIT OF INTEGRATION: 2.Bgg

NUMBER OF PLOT POINTS: Egg

SPACING BETWEEN PLOT POINTS: B.B29

STATE NUMBER " INITIAL CONDITION • ERROR CRITERION
t m

• t tll_m•Q • •••motIQmwe_••_•_o_ • •tow w• • •_e_•_ _eelmeeewme•m • •• • • ee •• Qo •• _ •o •

I * -B.E75 " -g. S33E+g8

Z * g,gBL * -g,9lSE-g2

3 • -g.25B -e.69BE+gl

L * B.Bgg * -g.lilE*g2

XI

Q •

CONTROL NUMBER * AMPLITUDE * FREOUENCY (CYCLES/SECi

I " 74.29g " Z._gg

2 * -21.2gg * l,ggg

3 * -g.239 * l.B_

Fig. 3. Sample data sheet for the QCSEE example

.0
=.

o

_.On 0'.|7 0',33 O.S(} 0._7 0'. _J3 I',,00 I, 17 T:'}3 I._,0 t'.67 1'. cJ3

T !_E (_EC)

Fig. 4. Comparative solutions: Fi_. 3, state I.

229



6

O °

I

_01 O0 9, 17 0.33 0.50

\__,

!,¢_7 I._.30',67 O'.a3 1"00 I'. 17 1.33 1.50

TIME 15EC_

Fig. 5. Comparative solutions: Fig. 3, state 2.

X_

). O0 0'. 17 0'.33 9'.5() O'.G7 0'.83 I'.00 I. !,7 I:33 I'._U I.$7 I._

TIME 15EC]

Fig. 6. Comparative soluclons: Fig. 3, state 3.
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X_

8

'0".O0 O. 17

Fig. 7. Comparative solutions: Fig. 3, state 4.
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_:e Total Synthesis Problem for Linear

:lultivariable Systems with Disturbances

Abstract

by

Kenneth Paul Dudek

The Total Synthesis Problem for Linear Multivariable Systems with Distur-

bances (TSD) is an extension of the Total Synthesis Problem (TSP) to include

systems whose plants and sensors are subject to external disturbances. TSP

provides an algebraic method for the direct frequency domain design and syn-

thesis of a system's response to commands and the control actions needed to

produce those responses under the fundamental constraint imposed by the

plant.

Analogous to TSP, we define TSD to be the composite of the Nominal Design

Problem for TSD (NDP/TSD) and the Good Feedback Synthesis Problem for TSD

(GFSP/TSD). Here, NDP/TSD is the problem of simultaneously characterizing all

outputs and controls a linear multivariable system can produce in response to

exogenous commands, plant disturbances, and sensor disturbances. GFSP/TSD is

the problem of finding a good feedback synthesis for a NDP/TSD solution.

We separate NDP/TSD into command and disturbance parts, the former being

the Nominal Design Problem for Command Responses (NDP/CR) and the latter being

the Nominal Design Problem for Disturbance Responses (NDP/DR). Similarly, we

separate GFSP/TSD into the Good Feedback Synthesis Problem for Command Re-

sponses (GFSP/CR) and the Good Feedback Synthesis Problem for Disturbance Re-

sponses (GFSP/DR). The solutions to NDP/CR and NDP/DR may be specified inde-

pendently. Furthermore, solutions to GFSP/CR exist whenever solutions to

GFSP/DR exist. Hence, TSD readily separates into two subproblems: the Com-

mand Part of TSD (TSD/CR) and the Disturbance Part of TSD (TSD/DR) where
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TSD/CRis the composlte of NDP/CRand CFSP/CR and TSD/DR is the composite of

NDP/DR and GFSP/DR. .4 NDP/CR and NDP/DR are completely independent and

GFSP/CR and GFSP/_R are "consecutively" independent, Lt follows _ha_ TSD/C2

and TSD/DR are "consecutively" independent. This is important s_nce TSD/CR

has already been solved in earlier works where it is called the Total Syn-

thesis Problem. As such, the primary contribution of this work is the solu-

tion to TSD/DR.

We recognize NDP/DR as an abstract kernel problem whose solutions are

effectively parameterized in terms of a single morphism. By placing condi-

tions on this morphism, we can guarantee the existence of solutions to

GFSP/DR, thereby solving TSD/DR.
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Abstract

Total Synthesis (TS) ideas for nonlinear,

multlvarlable control design are based upon the

Total Synthesis Problem introduced in 1979 [2].

Motivation for the TS approach, which originated

in gas turbine studies [I], Is the development of

an application based, user oriented design theory

for nonlinear, multlvariable feedback controller

synthesis. This paper continues the evaluation

of TS techniques, in an illustrative way, by means

of multiple examples founded upon a realistic di-

gital si=ulatlon for a gas turbine engine. Em-

phasis is placed upon the application viewpoint.

Introduction

This paper is about synthesis of nonlinear

multivarlable feedback control systems. More spe-

cifically it concerns the application of Total

Synthesis (TS) ideas tO nonlinear, multivariable

control desi_. The Total Synthesis Problem (TSP)

was introduced in |979 by Peczkowski, Saln, and

Leaks [2] and has continued under study [3-24],

wlth the motivation to develop a comprehensive

and useful, application based, design method for

multivarlable feedback controller synthesis.

The primary aim of the paper is to Illu-

strate, by example, the utility of TS relation-

ships and the Input-output viewpoint, and to show

how these ideas, employing transfer function ma-

trices, lead to a useful, application oriented,

multlvariable design method. The TS approach al-

lows designers to choose, at the outset, specific.

desired system responses and then to realize them

with feedback control structures having acceptable

control actlon. Because many nonlinear plants and

systems are locally llnear in nature, linear me-

thods must pertain to a sIEniflcsnt part of many

nonlinear problems. The linear properties, how-

ever, must be appropriately linked and scheduled

to produce proper nonlinear action.

Total Synthesis

Total Synthesls ideas refer to a top-down

strategy of Nomlnal Design and Feedback Synthesis

[191. Nominal Design depends on plant character-

Istlcs only, is independent of controller struc-

ture, and is the first step in the design proce-

dure [16]. Feedback Synthesis depends on the con-

troller structure and is the second step in the

design procedure. Discussion of Feedback Syn-

thesis for unity feedback is given in [18] and for

several other structures in [23] and in [24].

For applications, the significance of Nominal

Design is that this first step defines for the de-

signer, up front, acceptable system responses

which the plant can produce. Or saying it another

way, it outlines the performance which the plant

can deliver. This is important because then one

knows what responses may be requested.

The fundamental approach and thrust we take

here in application of Total Synthesis is to de-

sign feedback controllers to produce specific, de-

sired plant output responses, y - Tr, and accep-

table control action, u - Mr, in the manner Illu-

strated by Figure i. The objective is to give the

..3

M _ PLANT

Figure i.

designer, at the beginning, direct selection of

desired responses (M,T) of the closed loop system,

and to provide insights into the performance

choices available So that the designer is able to

influence directly the final outcome.

Noudnal Des i_n

Using the general control structure shown in

Figure I, the Nominal Design Problem (NDP) can be

summarized in the following way [161:

When P is given, find stable and proper pairs

M,T such that T - PM, so the diagram at the

left of Equation (I) commutes.

/
bd/
/

/

y-
/_ y - Pu (Is)

\
\ "F
\ u = Mr (Ib)
\

-- _ y = Tr (ic)
P
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It Is known [[6] that when P - ND-1, with N

and D having no zeros In common (right copr[me),

pairs (M,T) must be of the form:

Y

/_ u = Mr - DXr (2a)

_//_ _x\\\'_ y - Tr - NXr (2b)

P

These equations lead to a relationship between the

pairs M, T and the plant coprtme factors N and D:

(T,M) - (NX,DX) (3)

where X is a transfer function design matrix. Re-

lationships (2) and (3) are independent of con-

troller structure. Equation (3) shows that there

is only a single transfer function design matrix,

X, governing Nominal Design.

In practice, designers need to establish how

a plant must be controlled and, having established

that, verify that the plant can indeed be so con-

trolled. In thls paper we want to control output

responses (y) of the plant independently vlth

uniquely available plant inputs (u). The condi-
tion to do this Is that the plant inverse, p-l

must exist. AB an additional practical considera-

tion, the plant Inverse should exist with good

condition so that reasonable margin for control is

available. The existence of plant inverses Is of

paramount importance in both theory and applica-

tions and relates closely to characteristics which

directly affect successful design, as for example

meaningful multivariable control [21, plant

trackablllty [4], multivarlable zeros [12], and

cancellations and simplifications [2].

When p-I exists, Equation (in) may be written

y.
A

/ \

/

/

\'r

\

p-!

u - p-ly. (la')

Combining (Is') with

(ib) and (Ic) pro-

duces the diagram on

the left and a useful

relatlonsh£p

.. p-IT. (4)

Equation (4) is called the synthesis equation.

For M and T proper and stable, It displays intern-

ally stable causal responses [7]. The synthesis

equation Is independent of controller structure.

Feedback S_-_thests

The Feedback Synthesis problem Is concerned

with realizations of M, T pairs by specific con-

trol dynamics In a specific structure. We take a

unity feedback case for our purpose here [18] and

omit discussion on feedback path dynamics and sen-

sltlvlty specifications (23-2_l. A unity feedback
structure Is shown in F/gnre 2.

L. T

M

v

Figure 2.

The overall response of the unity feedback loop is

y - (I + PC) -I PG r. (5)

The desired response is y - Tr. Combining these

relationships and solving for the controller

dynamics matrix G infers

G - p-IT(I-T)-I - p-iQ (6)

where Q is a performance maurfx defined by Q -

T(I-T) -I - PG.

e

A basic question Is: Wlll the specific dy-

namics generated by the design equation produce

internally stable feedback systemS? Sain, et. al

[18] and Antsaklis and $ain [23-24] have studied

and answered this question for unity feedback and

for various other systems. In practice, internal

stability Is checked readily by thorough co_puter

simulations of specific closed loop realizations,

which simulations are required anyway to verify

performance. For Figure 2, the principal consl-

deratlons are that M be stable and that no right-

half-plane cancellations occur in PG or An GP.

Nonlinear Multivariable Design

A nonlinear multivarlable design method,

based on TS ideas, Is now described and illu-

strated. Features of the design method include:

1. Input-Output Viewpoint

2. Nominal Design

• plant evaluation

• a synthesis equation

• preselected output response T and

control response M

3. Feedback Synthesis

• unity feedback structure using M and T

• a design equation

4. Synthesis of Nonlinear Controllers

Equation (6) is a de-

sign equation. Rela-

tionships between de-

sign equation (6) and

synthesis equation (4)

for unity feedback are

pictured in the diagram.
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Nominal Des _ _,n

The design process begins with tdentlftcatlon

and evaluation of a given nonlinear plant, such as

the turbojet model shown in Figure 5, and follows

wlth Nom_[nal Desl_. It [s necessary tO know or

to establish the desired steady state operating

conditions of the plant and to determ/ne available

plant inputs and plant outputs. Then, identifica-

tion of the nonlinear plant along the selected op-

erating lines provides local plant dynamlcs and a

set of plant transfer function matrices [P(s)} re-

lating inputs and outputs.

The capability of the plant to produce inde-

pendent output performances using uniquely avail-

able inputs can be checked by choosing subsets of

square matrices of the plant transfer function ma-

trix and determ/nlng the existence and condition

of the corresponding set of plant inverse matrices

(P-l(s)}. Now the Nominal Design step can be ad-

dressed, using the synthesis equation M = F-IT, to

display the response possibilities available via

M, T pairs. In this paper, we will select output

responses, T, and check acceptability of corre-

sponding control responses, M.

Feedback Synthesis

Consider the dynamic behavior of a given,

nonlinear plant near its steady state points.

More generally, consider a class of nonlinear

plants whose dynam/c action near steady state

points is smooth enough so that the action can be

identified or described, essentially, by linear

dynamic considerations. An example of such a non-

linear plant is a turbojet engine model shown in

Figure 5. We discuss and illustrate a nonlinear

control synthesis method for nonlinear plants with

the characterlsties described above.

A relatively general linear unity feedback

system structure which uses the H and T dynamic

response concepts of Total Synthesis is shown in

Figure 3. This feedback structure provides co-

ordinated feedforward plant inputs, Ur, and plant

Figure 3.

output reference requests, Yrc, to a closed loop

control system. The feedfo_ard elements M and T

coordinate the request co.and, Yr; and the closed

loop provides accurate steady state tracking and

robustness of the plant outputS, Y. The chosen

and desired system response is designated by T.

The selected response of the feedback loop is de-

noted by T i.

The salient dynamlc elements of the control

structure are T, M and C which must be designed to

produce desired, desl_ner specified, T and T L re-

sponses. It turns out that two key equations go-

vern local design:

M - p-IT, (4)

C - p-ITL(I-TL)-I (7a)

- P-lOt. (Tb)

Equation (4) is the synthesis equation. It is

used to display all admissible (internally stable

and causal) responses (T,M) and (TL,ML).

Equation (7) is the design equation defining

the loop controller dynamics, G, for the control

structure in Figure 3. A/I controller dynamics M,

T and G are define d by the synthesis and design

equations when a designer selects specific re-

sponses T and T L. Thus two Total Synthesis rela-

tionships provide a basis for design of linear

multlvarlable control systems. For other discus-

sion and useful relationships see [1,23-24}. What

about nonlinear design?

Nonlinear Synthesis

The fundamental idea for synthesis of non-

linear controller elements to be illustrated here

is essentially simple and straightforward. The

idea is that fam/lles of local linear dynamic de-

scriptions, taken along desired steady state con-

ditions, may be linked and scheduled, as a func-

tion of operation conditions, to produce accurate

full range nonlinear dynamlc action. For example,

if a set of linear controllers, obtained by re-

peated application of design equation (7), gives

rise to a famlly {O} of forward dynamics in the

loop, then the goal is to llnk members of the

family together to produce a nonlinear dynamical

function g, that is {G} * g. Now each G may be

regarded as giving accurate dynamic behavior in

some local region of a steady state point. Under

reasonable conditions of smoothness, and with

enough members in the family, a careful linking

must lead to accurate and useful g, over operating

regions of interest, which emphasize behavior

along lines of eetpolnts.

To extend this notion, one can choose, along

an operating llne, sets of desired system output

responses (M,T} and loop responses [ML,TL}. From

these performance choices, lets of controller ma-

trices (T}, (M), and {G) can be generated via the

synthesis and design equations. A_I of the linear

sets may then be linked and scheduled, as a func-

tion of plant condition, to form nonlinear control

elements. Thus {T) ÷ t, [M} * m, and {G} * g.

Other functional features needed to structure

a nonlinear turbojet engine control system include

means to achieve desired steady state operating
schedules and means to effect transient control.

These features transform the linear system struc-

ture in Figure 3 to the nonlinear, unity feedback

system structure shown in Figure 4. Thle unity

feedback structure embodies key variables of the

Total Synthesis viewpoint, namely t, m, and g, and
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provides basic features needed for full-range,

nonlinear control. It is used _n the Lurbojet

engine design examples whlch follow.

Figure 4.

Nonlinear Design Examples

We illustrate the foregoing synthesis by de-

signing a nonlinear control system for a turbojet

engine. In the design examples, unique, indepen-

dent control of the engine outputs will be demon-

strated. Utility of independent control is shown

by designs which produce desired and specific out-

put response strategies, with unique, acceptable

control inputs. Robustness of the control system

to significant plant parameter variations is Il-

lustrated also. Performance results are presented

by time traces, from hybrid simulations, of system

responses for small step commands and for full

range step commands.

Nonlinear Turbojet En@ine

A nonlinear model of a simple turbojet engine

Is descrlbed_by FIKare 5. In essence, It is a

full range computer simulation constructed by en-

gine manufacturers and provided to engine control

deslgners. The turbojet model consists of three

integrators, nine nonlinear functions including

five bi-varlant functions, nine multipliers and

dividers and nine summing Junctions. The model

describes nonlinear dynamical and steady state re-

lationshlps between three input variables: fuel

flow, Wf, exhaust nozzle area, Aj, and turbine

vane position, 8, and six outputs: engine speed,

N, turbine temperature T, engine thrust, FN, and

three other variables. We regard the nonlinear

simulation model as a nonlinear function p from a

real vector space of control functions of time to

a real vector space of plant output response func-

tions of time, y " pu.

For the design examples, three outputs:

speed, temperature, and thrust were selected for

control by three inputs, fuel flow, nozzle area,

and turbine vane. The engine input vector Is

u' - [Wf. Aj, S]

and the engine output vector is

y' = [N, T, FN].

The nonlinear engine model was Ident_fied

locally at five sea level, standard conditions

corresponding to 70%, 80%, 90%, I00% and II0%

W_ N,.•
T|lll_--lh, --

I'

I .
i" {

P2 P2_ >_--j FN
A.

J

Figure 5.

speed levels. Thue from the nonlinear engine p, a

set of five transfer function matrices, [P}, was

identified. At 100% speed conditions, the plant

transfer function and its inverse were found to

be:

I __704{.01s41iI

5.4{.Ols-l) _.1(.0_s-1)

.t3(l.$s-t) -2.?(.50e-IH.Oln-1) 336f.Sls,1}

2.4(.290,I) BS_f.4_s.1)(.O1s-1) 951(.01s,I

P(s) -

p(O) ol .

.I|(.23e-I)(.O1|.I) |.7(.Ols.l)(.ooTm#l) -.OO3(.ola*l I

-.o05(-._e-t) -.08(.01s-1) .015(.01e-I)

• ,O001(,?4|*l)(,Olo_l} ,O01?f,OlJ*l)f,OISs'l) .00015(.018.1

(,0090"1)

Des lgn Strategy

For a turbojet engine, a nice strategy for

control is: i. fas_ thrust response, 2. smooth

temperature response, 3. varied speed response.

To be able tO influence the engine output response

directly and independently, the system i8 de-

coupled by specifying T as a diagonal tuatrlx.
Flant Lnverses, {P(s)']_, exist with good condi-

tion. Therefore, decoupling and independent con-

trol of the selected output with the available in-

puts Is possible.
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NominalDesignusingsynthes_sequation(a),
M= p-IT, requiresthatMbeproperandstable.
Tosatisfy thls requirement,it turnsout, the
simplestresponseformin theelementsof T is til
= I/(TS+I), first order lags. To achieve the con-

trol strategy cited above, over the engine opera-

ting range from 70% speed to 100% speed, the fol-

lowlng local output response elements of T are

chosen:

I
Thrust: t33 --- (fast)

.2s+l

I
Temperature: t22 - -- (smooth)

Is+I

1 1
Speed: tl[ - -- at 70% ÷-- at 100%

•5s+l .2s+l

These sets of {T} lead to a nonlinear t, {T} ÷ t,

of the form shown in Figure 6. This will be the

response specification for Example i.

F

I

I
t

I
_r

L ......... - .....

-7

I

i

l

I

I

I

i

I

I

J

-

Figure 7.

_&Wf

-.-----,,_ j

Figure 6.

The response of the closed loop is desIKned

to produce T L. It Is assumed that T L is a dia-

gonal matrix and the local response of each ele-

ment is ill = |/(.02s+l) over the entire operating
range. Thus the closed loop Is decoupled and fast

acting. Feedback Synthesis of the controller g is

accomplished by repeated use of design equation
(7). G - P-ITL(I-TL) -! = P-lOL- This obtains the

set {G} and then (G} is scheduled to form g. This

process produced a nonlinear controller g of the

form shown In Figure 7. It will be used in all of

the examples.

Design Examples

Performance of control systems (Figure 4) are

111ustrated by time traces of plant output and

plant input responses for small and full range

step commands.

Example 1. The engine performance strategT de-

sired is: fast thrust response, smooth tempera-

ture response, and a varied speed response. The

specified nonlinear output response, t, Is given

by Figure 6. Plant output and control action re-
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sponses _or smalZ step commands are shown Ln FI-

gures 8 and 9 respectively. The outpuL response

performance ts achieved with reasonable control

action. Full range acceleratlon and deceleration

transients are shown in Figures [0 and If.

%

_ OUTPUTS
T £X_U_L[I,

_oo z4oo90

1500 2000 N

o _6 20 3b 6 _ 6 s
T IM[ SECONDS TlUE S[COqOS

6O

.- 20

-20

ii__
-60

Figure 8. Figure i0.
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700-
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zo 3'o
TIMIr SECONDS

z_°° 1 _ INPUTS

200 • ANI_.
FU|L FLOW

_ pp_

q 1300

Do _-
40

Z0

"6O

Figure 9. Figure II.
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Example 2. At this point the desigmer may choose

_any other response optkons. For instance, in-

stead of varying the speed response as in Example

l, choose the speed response to be constant over

the range such that tll = I/(.3s+l). Keep t22 =

I/(Is+l) and t33 - I/(.2s+l). Thus the response

s_rateg, y is the same except that the local speed

response is constant over the full range. Output

response performance is shown in Figure 12.

T
100

DEO

35O0 24OO

F

1500 2000 N
%

_600

70-

'

_J""° 1 L______

0 _b 20 30
I"IM[ $ ECON0S

Figure 12.

OUTPUTS
EXN_LE ).

T 100
OgO

F _ 9_ "
_500 2000

%

$o
o fb T ,.[ 20 srCO.Os

Figure 13.

Example 3. Y_ep the strategy in Example 2, but

speed up the relative response of the temperature

to t22 - l.'(.Ss+l) from |/(Is+l). Small step com-

mand output response is shown in Figure 13.

Example 4. To show versatility, we imagine that

the designer wishes to "flick carbon off the tur-

bine blades _ and selects the speed response to be

oscillatory at 5 radlans per second with a damping

ratio of ,25, ill = I/(.04e 2 + lOs+l). The tem-

perature and thrust responses need to be main-

tained as i second and .2 second lags respective-

ly. The output transients are shoen in Figure 14.

Control action performance is shown in Figure 15,

OUTPUTS

DiG

1500 2000

1600

2OO

Aj
z.z

;20

%

4O

2O

-2O

-6O

Wf
PPH

?O0-

iO 3O
TtME S't¢ONOS

Figure 14.

INPUTS

FI.OW
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Example 5. Robustness of the controller relative

to engine parameter variation is shown. The en-

gine tLme constants on speed, temperature and

tallplpe pressure were slowed by a factor of 2.

This Is a large variation of Jet engine parameters

and [s a good test of control robustness. The re-

sponse strategy from Example 2 is chosen as the

desired output response performance. Time tran-

sients comparing the plant output responses for

the nominal engine and the slow engine are shown

in Figures 16 and 17. Note thaL the controller

maintains output performance at the desired condi-

tions. Corresponding responses of the control ac-

tion are shown in Figures [8 and 19. The control-

ler keeps output responses at the desired condi-

tion but produces substantially different control

action for the slow engine, as needed.
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35OO 2400
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_600

70-
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Figure 16.
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Example 6. Here we change the strategy and choose

to specify all output responses to be fast to

match the thrust. Thus t Is a diagonal matrix

wlth all flrst order lags and the time constants

are .2 seconds over the full range. The response

of the system to small step inputs is shown in

Figures 20 and 21. The responses of the system to

full range translenCs are pictured in Figures 22

and 23,
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Summary Remarks

A nonlinear, multtvarlable control design me-

thod. based on Total Eynthesls ideas, was dis-

cussed and Illustrated. Emphasis was placed on

application viewpoint and a nonlinear synthesis

technique which produced designer spectfled re-

sponse performance.

Total Synthesis is a top-down strategy of

Nominal Design and Feedback Synthesis. Nominal

Design, the first step In the design process,

depends on plant characteristics only. Feedback

Synthesis, the second step in the design process,

depends on controller structure. Unity feedback

structure was hlghllghted in thls paper.

Control systems were designed for slx lllu-

strative examples to demonstrate various, desired

nonlinear output response strategies and selected,

local output response performance.
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ABSTRACT

The idea of specifying desired system responses has

resulted £n a new approach for design of mltlvarl-

able control systems. A unique feedback controller

structure, using coordinated feedforward and feed-

back dynamics, Is presented and discussed. The

method offers designer insight into pla_t dynamics

and offers influence and choices over system re-

sponses. Responses are specified and control dy-

namics are obtained at local conditions along de-

sired steady state control paths. Linear desi&nns

are linked to form nonlinear control law dynamics.

The method is illustrated by simulations.

INTRODUCTION

Acceptable response is a hallmark of successful

design for _itivarlable control systems. The work

reported here is part of a continuing effort [I-9]

by the authors to fox'mulate theoretical and prac-

tlcal views concerning nonlinear _,,Itlvariable syn-

thesis and design.

This paper discusses a multivariable control design

approach with emphasis on appllcatlon aspects of

system response. A companion paper 57 the authors

in these Proceedings, titled "Nonlinear Control by

Coordinated Feedback Synthesis, with Gas Turbine

ApplicatiOns", discusses theoretical and other

aspects of nonlinear synthesis.

Here we discuss a control approach and philosophy

which linearlzes the plant at a finite n_ber of

points over the envelope of operation, which ap-

plies linear transfer function synthesis techniques

about each point to obtain desired output responses

and acceptable control responses, which systematl-

cally links and schedules all local designs to-

gether into a global design over the envelope as a

function of key plant variables within a broad non-

linear design strategy. The synthesis approach is

based on three matrix design equations which show

how a controller la related to the given plant, the

desired response performance and the selected

controller structure.

LINEAR SYNTI_SIS

In this section we describe and illustrate a design

method called Total Synthesis [6, 7, 8, 9] which

consists of two basic parts and steps: |. Nominal

Design and 2. Feedback Synthesis. Nominal Design,

the first step, depends on plant characteristics

only and is independent of controller structure.

Feedback SFnthesls, the second step, devends on

the specific controller structure chosen for real-

izing the feedback loop.

The purpose here is to apply Total Synthesis co

design linear feedback controllers which achieve

preselected, attainable plant output responses,

y - Tr, and acceptable control responses, u - Mr, ._

in the manner illustrated by FIRure I below.

Figure i.

The obJectlve is to obtain a design method which

allows the deaIwner, at the outset, choices for

selection of attainable responses (M, T) for the --

closed loop system, and provides insight into the

performance choices available so that the designer

may directly influence the desired performance

OUtCO_*

The slgnlflcance of Nominal Design Is that the

first step evaluates the plant and defines the at-

tainable system responses which the plant can pro- ._

duce. This _s vital for design because when the

classes of attainable plant responses are known at

the outset, then one can more successfully ask for,

and get, acceptable system performance. The second

step, Feedback Synthesis, is concerned with reall-

zatlons of (M, T) pairs by control dynamics wlth

specific feedback configurations.

Sznthesis for Output Response

The basic notion of multlvariable control synthesis

to obtain desired output response is straightfor-

ward and easy to understand. Consider Figure 2,

a block diagram for a negative feedback multi-

variable structure with no disturbances. Refer-

ences, error, plant input and plant output are

designated r, e, u and y respectively. Assume the -

plant has equal numbers of inputs and outputs: thus
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P(s) is a square _trlx of transfer functions.

The assumption is not nearly as restrictive as

one might suppose at the outset: more on this

later. The controller G(s) is also square.

r_ T _i

Figure 2.

The problem, given plant P(s), is to design a con-

troller G(s) to achieve desired, internally stable,

closed loop response T(s) as indicated in Figure 2.

The objective is to design G(s) so that closed loop

response T(s) is achieved in such a way that de-

signer choices, insight and influence are available

and accessible. References [I-4] can provide more

details for the interested reader•

A Design Equation

From Figure 2, the total response of the unity

feedback loop is

y - (I + FGH)'IFCr. (i)

The desired response is

y = Tr. (2)

Combining equations (I) and (2) and solvlng for O

gives the controller

O = P-IT(I - HT) -l. (3)

This equation may be written in a convenient,

compact form

- r'iO (4)

where Q, a performance matrix, is defined bY 0 "

T(I - HT) -I. Equation (4) is named the design

equation for the feedback structure of Figure 2.

The design equation simply and clearly indicates

that controller design focuses upon the properties

of the plant inverse and how che F interact with

Q(s), the performance matrix. Does the existence

of the plant inverse pose a serious restriction for

transfer function design?

The Plant Inverse

Fortunately, the need for existence of the plant

inverse turns out to be a very useful property for

control synthesis. The plant inverse establishes

and displays vital plant characteristics needed Co

effect successful closed loop control design. Four

system and plant features are established and iden-

tified by the plant inverse transfer _unction:

I. meaningful multivarlable control [lO].

2. plant trackability [II}.

3. multlvarlable plant zeros [12J.

4. cancellations and simplifications [l-&l.

Existence of the plant inverse assures conditions

needed to effect synthesis and design.

Feedback Synthesis

From the foregoing discussion it appears to be

possible to design control dynamics G(s), by

applying design equation (4) so that desired

closed loop output response is achieved. Some

conditions and restrictions on the output re-

sponse are needed if internal loop stability is

to be assured. In this section, a synthesis

equation is developed which displays all attain-

able control response and output response transfer

function matrlcesfor which internally stable,

feedback realizations exist [II].

Consider Figure 3 where r denotes request, u

denotes control action, and y denotes response•

Under broad ass_ptions, there exist linear

operators T : R -> Y

E H -' -
| _ _ PLANT

Fibre 3.

and M : R -> U, where R, U, and Y may be under-

stood as R(s)-vector spaces of finite dimension

such thaC:

y = Tr and u - Mr. (5)

The plant can be understood in terms of an operator

P : U -> Y, such that

Y - _ • (6)

Combining equations (5) and (6) obtains the

relaCionshlp

T- FM . (7)

Bengtsson [13] proved thac internally stable feed-

back raallzatlons of systems depicted by Figure 3

exist if end only if M is proper and stable end T

is proper and stable.

More important than (7) is the equation which

results when P is inverted, namely

M - p-IT . (8)

We hi_hlight' (8) and call it the synthesis

equation.
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The idea is, for given plant P, ¢o select proper

and stable T so chat M is also proper and stable.

This insures existence of internally stable con-

trollers. The synthesis equation displays all

possible responses T which have internally stable

feedback realizations. When T is selected, design

equation (4) may be applied. What about the choice

for the feedback dynamics _(s)? Is it possible to

impose a sensitivity requlrement on the closed loop

In addition to the response requirements and thus

syntheslze both response and sensitivity?

Synthesis for _sponse and Sensitlvlt_

This section is based on ideas and concepts re-

ported by Perkins & Cruz [14] & Saln & Ma [15].

The purpose of thls section is to obtain design

equations to achieve both desired dynamic response,

T, and desired sensitivity, S. The specification

of T has to do with tracking, regulation, transient

response, decoupllng or nondecoupllng and steady

state values. The specification of S involves the

extent to which the specification, T, is to deviate

from no_/nal conditions under parametric variation

in the plant.

The Perkins-Cruz idea is to compare the parametric

variation effect on the response of a feedback

system with a corresponding effect of the same

variation on an open loop system, where both are

designed to achieve the same nominal response.

This means that when plant parameters are sot equal

to the nominal values, as is usually the case, both

the open loop and closed loop systems fall to meet

the total synthesis response specification TCs).

This situation produces two response error ma-

trices: the open loop error, EOL, and a closed

loop error, ECL.

A remarkable thing is that there exists a com-

parison sensitivity matrix relating closed loop

error to open loop error:

where

ECL - S(s, a) SOL (9)

S(s, a) = (I + P(s, a)GR) -I • (10)

We highlight (I0) and refer co S as the cc_,pari-

son=sensltivity matrix.

The goal is to arrange the design so that the

closed loop error, ECL, is more acceptable than

the open loop error EOL. Then the feedback con-

figuration is said to "reduce" parameter sensi-

tivity with respect to the open loop configura-

tion, which is taken as the reference,

Equation (I0) provides the link needed to specify

both output response and comparison sensitivity

performance requirements simultaneously for syn-

thesis of multivariable feedback systems. For

the closed loop system in Figure 4, the following

equations now apply:

T = (I + PGR)-IpG response matrix (II)

S = (I + PG_) -I comparison sensitivity (12)

Q= PC performance matrix (13)

i= t_ .

Figure 4.

Combining equations (II), (12) and (13) obtains a

new relationship for the performance matrix.

Q = PG - S-IT • (14)

Thus the performance matrix is a function of

response T and comparison sensitivity S. Using

(14) to solve for G and R gives:

O- P-IS-IT (15)

and

- T-l(l - S) . (L6)

Equatlons (15) and 16) are highlighted as _he

design equations for _he forward and feedback

controller dynamics respectively for the output

feedback structure in Figure 4. They express

controller dynamics in terms of the response

matrix and co_arlson sensitivity matrix only.

It iS interesting to picture these design equa-

tions in a block diagram and note that the feed-

back system in Figure 4 is transformed into a

feedback system expressed only in terms of the

response and sensitivity matrices. This diagram, -

Figure 5, clearly shows that when T and $ are spec

If led, in effect, the dynamics of the forward and

feedback paths are determlned explicitly.

Figure 5.

Three Basic Equations

In st--mary, three relationships form the basis for

an approach to synthesize _m_l=Ivarlable controls:

- synthesis equation

- design equation

- design equation

M - p-IT (8)

G = P-lO = p-IS-IT (15)

= T-Ill - S) (16)

These ideas are next extended to nonlinear design.

2&8
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NONLI_AR SYNTHESIS Nonlinear S_'nthests

As we have seen, Total Synthesis, for the linear

multivariable case, gives the capability to design

internally stable feedback control systems which

achieve prescribed control and output responses and

also specified sensitivity. In this Section we

apply and extend the Total Synthesis concepts for

global, nonlinear control. The goal is to design

nonlinear mul=Ivariable controllers to obtain

prescribed performance.

Feedforward-Feedback S,vnthesis

Consider the dynamic behavior of a nonlinear plant

near its steady state points. Real, physical

plants are generally nonlinear, but almost always

exhibit linear dynamic behavior in neighborhoods of

operating lines. We consider such classes of non-

linear plants in this paper. An example on Chls

class is the nonlinear turbojet engine model de-

scribed in Figure 8. Our objective is to apply

Total Synthesis ideas to design nonlinear control

systems.

For small signal action of the nonlinear control

system, the following feedforward-feedback struc-

ture is proposed:

Figure 6.

The controller configuration is arranged so that

feedforward, open loop controllers M and T act to

produce M and T response action directly and the

feedback controller loop action trims any errors

which are generated. A separation principle is

imposed on the feedforward and feedback actions.

That is to say, the feedforward elements are

required to produce directly the desired (M, T)

response pair and the feedback loop Is required to

track the Yr command signal.

This control configuration defines separated,

unique, coordinated feedforward and feedback con-

trollers. Moreover, the dynamics of the feed-

forward elements are exactly the dynamics of the

desired control response, M(a), and the desired

output response, T(s). Also, the independence of

the feedback loop response, TL, due to the separa-

tion principle_is an added beneficial feature for

robust design. We extend these ideas to the non-

linear case in the following.

Assume a given nonlinear plant p, and assume that

identification of its dynamics in local neighbor-

hoods along steady state operating lines gives

rise to a set of plant transfer function matrices

[P(s)}. That is p -> [P} and from {P} -> {p-l},

the set of plant inverses is calculated. The

question is do the sets {P) and {p-l} contain suf-

ficient information to define accurately and to

reconstruct the dynamic action of the nonlinear

plant and the inverse along its operatin_ line?

When the answer is yes, nonlinear controller

dynam/cs can be designed systematically using

Total SFuthesis concepts.

If repeated application of design equation (15)

leads to a family {G} of forward dynamics, the

goal is to link members of the family together to

produce a nenllnear controller g, that is {G} ->

g. Now each G is regarded as givln_ accurate

dynamic behavior in some local region of a steady

state point. Therefore, under reasonable condi-

tions of smoothness, and with sufficient members

in the family, a careful linking of the set -,,st

lead to accurate and useful g over operating

regions of interest.

Continuing this notion, one chooses, along the

operating line, sets of desired system responses

{M, T} and desired loop responses {ML, TL}. From

these performance choices, sets of linear control-

ler matrices {T}, {M}, {G} and [H} can be gener-

ated via synthesis equation (8) and design equa-

tions (15) and (16). Then, all of the linear

control sets may be linked and scheduled, as a

function of plant condition, to form nonlinear

control elements: {T} -> t, (M} -> m, and {G} -> g.

Using the foregoing philosophy, the linear feed-

forward-feedback structure in Figure 6 may be ex-

tended to the nonlinear case. Addin_ features

needed to achieve desired steady state output

schedules, and means to effect transient control,

transform the linear structure in Figure 6 to the

nonlinear structure shown in Fizure 7. The struc-

ture embodies key variables and concepts of the

Total Synthesis viewDoint, namely: t, m and g, and

provides support features needed for full-range,

nonlinear control. This structure will be used in

the turbojet engine design examples which follow.

SCMKDULI_S

Figure 7.
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NON'LINEAR EXAMPLES

We illustrate the foregoing sy_nthesis by desi_nin_

nonlinear control systems for a turbojet engine.

Unique, independent control of the engine outputs

is demonstrated. Utility of independent control is

shown by designs which produce desired and specific

output response strategies, with unique, acceptable

control inputs. Robustness of the control system

to significant plant parameter variations is illus-

trated also. Performance results are presented

time traces, from hybrid si_ulatlone, of system

responses for small step commands and for full

range step commands.

Nonlinear Turbojet Engine

A nonlinear model of a simple turbojet engine is

described by Figure 8. The model describes non-

linear dynamical and steady state relationships

between three input variables: fuel flow, Wf,

exhaust nozzle area. Aj, and turbine vane position,
_, and six outputs: engine speed, N, turbine tem-

perature, T. engine thrust, FN, and three other var-

iables. We regard the nonlinear simulation model

as a nonlinear function p from a real vector space

of control functions of ti=e to a real vector space

of plant output response functions of time, y - pu.

For the design examples, three outputS: speed, tem-

perature, and thrust were selected for control by

three inputs. The engine input vector is

U'
" [Wf,Aj,B] and the engine Output vector is

y'

The nonlinear engine model was identified locally

at five sea level, standard conditions correspond-

ing to 70%, 80%, 90%, SO0, and I10% speed levels.

At i00% speed conditions, the plant transfer func-

tion and its inverse were found to be:

5,4(o0X1+1) _.l_.Ollel} -2704(.01eel} 1

• 13Cl._s+%) -2.7 338(.3_.1) /

2,4(.29s+1} _.3(.42a_l){.Ols.t) tSl(.78e+l_P(.! • = , ,

(._Svl)[,Ole+l)

A 3 ° .

, -siL l

P2 P2_

Aj--_
Figure 8.

N

T4

P3

Ps.

T5

F.q

sponee forms for the elements of T may be chosen

as first order lags, tii - 1/Ts+l. This may be

seen by no_ing the form of the plant inverse

transfer function given above. To achieve con-

trol strategy 1 cited above, over the operating

range from 70% speed to 100% speed, the following

dynamics for the output elements of T are chosen:

Speed:(varled) ill

Temperature:(smoo_h) t22

1 1
= _ #7o% to _ _Ioo%

IS_I

p(S) "l

r .tl(.==,._;(.o,.ox) x.T(.o;,ot)(.oo,,,_) -oe3(.oz,*x_

/"°°s("a'*_) -oe(.oL,._) .o_(.o_,._
. L*.oool(.74e+l)(.ols*t) ,oOl?(,oll-t)(.ol3i*t) .oo015(.o1_+1_

(.O09set}

STnthests StrateK_

For a turbojet engine we consider two possible

response strategies: l. fast thrust response,

smooth temperature response, varied speed response,

and 2. uniform response of all engine outputs to

keep system transients near the steady state. We

shall demonstrate both strategies. Plant inverses,

{p-l}, at all steady states exist with good con-

dttion; therefore, independent control of the

selected outputs is attainable. To be able to

influence the response of each output separately,

we shall specify T as a diagonal matrix.

Nominal design using synthesis equation (8),
M = p-LT, requires that M be proper and stable.

To satisfy this requirement, the simplest re-
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These specifications form a set of responses {T}

which lead to a nonlinear, diagonal t sho_u in Fig-

ure 9. This will be the response sveclficatlon for

Example I usin; the control structure in Fixure 7.

F_gure 9.
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The response of the closed loop in Figure 7 is

designed to produce t L. We choose to make T L a

diagonal matrix and we seC the response of each

element to be I/(.02s+l) over the entire operating

range. This unity feedback loop Is fast acting

and has diagonal sensitivity S L whose elements are

Sli - .02s/(.O2s+l) in accordance with design

equation (16).

S_nchesls of the nonlinear controller g is ac-

co._lished by repeated use of desirn eouation

(15). This obtains a set (G} which is scheduled

to make a g of the form shown in Figure I0.

Figure I0.

: aWl

,.aAi

,

Design Examples

Performance of the nonlinear control systems

(Figure 7) are illustrated by time traces of

plant output and plant input responses for small

and full range step commands.

tively. Full range acceleration and deceleration

cranslents are sho_rn in Figures 13 and 14. Desired

output response performance is achieved wlth ac-

ceptable control action.

T
I00

C)EG

2400

F _ 90'

_500 2000
%

_= 80

OUTPUTS

|XAMPL| I.

1600

Yigure 1 1.

ZOO

Ai
IN ='

J20

%
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40

zsoo- //_ INPUTS
EXAM@L| 1.

[ I J ,usL_Lo.

1900-

1300-

0 I0 20 30
TIMF. sIrcoNO$

!--
i

Exa_le I. Kxecute engine performance strategy 1,

namely: fast, varied thrust response, smooth, con-

stanC te_eracure response lind nominal, varied

speed response. The specifications for this non-

linear response, t, are given by Figure 9. EnEine

output and control action responses for small step

commands are shown in Fisures II and 12 respec-
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Example 2. Demonstrate strategy 2. We choose the

dynamic response of every output to be identical
and we choose to fit thls response over the speed
range. This strategy is used to keep the system
nearer Co the steady state operating llne during
transients. Decoupled output response is chosen
and the elements of the diagonal matrix were se-
lected 1/(.3s+1). The response of the system for
smut1 step inputs is shown in Figures 15 and 16,
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Example 3. Demonstrate robustness of the control-

ler relative to engine parameter variation. Re-

sponse strategy I from Example 1 is chosen as the

desired perfot_nance. The engine time constants on

speed, temperature and pressure were slowed by a

factor of 2. This is a large variation of engine

parameters and a good test of control robustness.

Step transients comparing engine output and input

responses for the nomlnel engine and the slow

engine are shown in Figures 17 end 18. The con-

troller maintains output response at desired

conditions and produces different control re-

sponse action for the slow engine, as needed.

T
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5500 2400

IOO

OUTPUTS
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Figure 17.
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Figure 18.

SUHMARY

A synthesis aporoach for nonlinear _Itivariable

systems was discussed. Features of :he aoproach

include the capability to synthesize nonlinear

feedback control systems directly to produce

desired response and desired sensitivity per-

formance. Emphasis was placed on application

viewpoint.
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ABSTRACT

Broadly understood, the tasks of s feedback

controller are to close loops and to inject signals

into those loops. The performance oEa feedback

control system depends upon both of these tasks,

which are interdependent. In this paper, ve study

conditions under which the tasks r_my be separated.

In s most general netting, we define separation in

teram st the assumption that a match between de-

sired and actual loop responses implies zero feed-
beck action. It Is then shown that such a feature

implies whet may be termed feedforvsrd signal co-

ordination; moreover, under slightly stronger as-

sumptions, such signal coordination implies separa-

tion. All the ideas are illustrated in terms of s

three-lnput, three-output gas turbine simulation.

I. I_rRODUCTION

The wor_ reported hera is part of a continu-

ing effort [I - 26] by the authors to formulate

some thsoretlcel and some practical vlewa concern-

ins current nonlinear design procedures in alrcraEt

gas turbineengines. We illustrate our ideas in

the context of a three-input, three-output gas tur-
bine sifulatlon.

Acceptable response, simple controllers end

clear insight are hall,urka of successful design

for R, itlvariable control systems. Even when per-

fect plant knowledge is available and there are no

system disturbances, the development of reasonable

response specifications, end their schievemen¢ in

practice, is not a trivial matter, When the plant

is uncertain, or acted upon by disturbances, or un-

stable, the choice of feedback realization of the

controller may place the response goals in competi-

tion with new goals such am internal stability,

sensitivity suppression, and disturbance rejection.
IC is important ¢o reduce the effects of such com-

petitlon_ One way to approach this goal Is to e-

linnets the co_petltlon when plants are accurate-

ly described and disturbances are inconsequential.

Then, when such is not the case, the loop activity

may be directed to suppression and rejection.

This paper dlscuaaee such a possibility. A

Companion paper in this proceedings, entitled "Syn-

thesis of System Response: A Nonlinear Multlvsriable

Control Design Approach'. examines the design im-
plementation of such ideas, down to controller con-

s tructton and system simulation.

II. PRELIMINARIES

It is a relatively rare thing for s control

254

engineer to be given a plant description in terms

of explicit differentlsl equations expressed In

term8 of textbook special functlona. Instead_

plant differential equations must ordinarlly be

inferred implicitly from a digital simulation

supplied by the menufacturer. We view the text-

book differential equatlon as a compact symbolism

with which to describe simulations; and we shall

endeavor to describe as much of the design process

sa possible in these terms.

By a system we shall mean a set of n ordlnar7

differential equations,

xl = fi(Xl, x2 .... , Xn, Ul, u2, "", um)

for I = 1,2,3, ..., n, together with s llst of v
functions

yJ " _jCxl, x2 .... , xn, Ul, u2, ..., '_)

for J - 1,2,3..,., p. The 8ystem state x is (Xl,

x2, ..., Xn): the system input u is (u I, u2, ...,

Um); and the system output y Is (Yl, Y2, "', Yp).

We shall regard (x, u, y) am being resident in s

function subset S c X x U x Y, where X, U, and Y

are real vector function spaces and X x U x T is

the product of X with U with ¥. Such a subset S
Is called a relation. If we agree upon the conven-

tions f - (fl, f2. "'', fn), g " (gl. g2, "'', gp),
" (il, x2, .... Xn), then we have the textbook

description

r - f(x,u) ; y - _(x,u) ;

briefly, ve may refer to (f, g) as the system. BF

itself, without the subset S. it is typically the

case that (f. R) has little englneerin x signifi-
cance.

Nlth the plant simulation being provided by

the manufacturer, it is reasonable to assu_e that

S is a feature of thac almulation. With regard to

controller simulation, we shall assume that appro-

priate (f, g) and S are indicated implicitly and

constructively bF the design process. It is so_-

times useful to project $ upon X, U, and Y to ob-

tain Sx, Su, and Sy, respectively. However, care
must be used in interpreting these "factor" sets.

Feedback systems make use of interconnections;

and each component system which participates in the

connection is identified by some functtons, ss for

example (f, _). It is natural, therefore, that the

designer wllL become involved with certain quen-

lions which depend upon the relationships between

and among functions. In many cases, such relation-

ships can he pictured concisely by arrow diagram.



Begin with the functions f and g. Each oper-

ate= on pairs (x, u) [n X x U. [fue usage that
X contains first derivatives of its elements _,

then f and g have array diagram representations:

fX = U--------_ X ; Xx U ¥ .

The set at the arrowhead is called the codomain of

the function, while the other set is called its

dommin. Doa_aina and codomaine may also be indi-
cated, in line, by the notations f : X x U + X and

g : X x U÷¥.
To illustrate the study of relationships by

dla_rama, ve make use of the fact thac X and U are

real vector spaces, an that we can write

r(x, u) o (rx, r=) ; (x, u) - (x, O) + (0, u).

With these operations X x U is a direct st=a, de-

noted by X • U. Such spaces have projections and

injections defined as follows:

Px : X • U * X ; Px(X, u) - x ;

Pu : X ® U + U ; Pu(X, u) - u ;

i x : X - X• U | ix(x) - (x, O) ;

iu : U * X• U ; iu(u) - (0, u) •

tn Figure l, _ have drauTt in solid arrows for the

f=ncCions f, ix, and iu; we have dram in dashed
arrays for.'two new functions a : X + X and b : U +

X. The solid arrows refer to Riven functional

i x iu

X,, ) Xe U( sU

a _ f .- b

Figure 1.

the dashed arrova indicate possible new functions.

In order to be able ¢o chan_e the dashed arrows to

solid arrows, we must define a and b so that the

diagram "cosmatea'. A diagram cn_asstes when alter-

sate packs from the same beg?n sat to the same end

set give the same result for each element in the be-

gin set. BF way of example, define a(x) - f(x, 0);

then the left trt#n;le in Figure I commutes because

f(tx(x)) - fix, O) " a(x). We write this as

a - f.ix, where * denotes function co_poaltion. No

other deftnltlon for a is poaslble. In like manner.

we --,at choose b = f.i u to make the diagram commute.
Xn case f lea linear functlon, then f(x. u) - a(x)

+ b(u) where a and b are linear as yell, by calcula-

tions such as

f(x, u) - fCCx, o) + (0, u)) o fCx, o) + f(o, u).

XB the nex_ section we can make immediate up-

placation o5 a counterpart of Figure 1. even when

the function [atts Co be linear. Consider a func-

tion ¢ : V * W • Z, ae in Yt_tre 2. Alon K the

a / "_ b

w_ We z >z
Pv P=

Figure 2.

lines Just discussed, the choices a - pw.c and

b - pz.C mike the diagram COmmute. Horeover

c - Iv.a ÷ Iz.b

even though a, b, and C are nonlinear functions.

Proof rests upon the calculation

c(v) = iwCaC,)l + lz(bCv))

- iwC_,Cc(,))),_=(pz(c(v))]

- lwCw) + l=(z)

when c(v) - (w, z). Thin important result states

that nontlnear system= with two outputs split nat-

urally into a palr of nonlinear system, each of

which produces one output.

One other concept which is also helpful in

Section III is the generallzed derivative.

Let V and W be normed real vector spaces with

Z c V an open subset. A function f : Z * W is dlf-

ferentlable at a point p In Z if there exists a

continuous linear map F : V + N such that, for

(p + h) in Z and h in V,

zi= ;I [(_ + h) - f(_) - _h I I
= 0 •

IIhll-o Jl _ II

IX F exiats, then I¢ is unique and is called the

derivative of f at p, and Is denoted by (Df)(p) :

V + W. In case f le dlfferentlable on Z. then we

have a construction Df : Z ÷ L(V, W) , where the

right member denotes the real vector space of real

linear maps V + W.

With the notion oe generalized differentia-

tion couue the associated idea of TayZor represen-

Cation. For the present, ,,_ vilh only to observe

that the expansion

f(z) - f(p ÷ h) - f(p) ÷ (Of)(p)h + ...

is available when the required smoothness condl-

lions hold.

UI. STRUCTUP_ SEPARATION

The feedback system is comprised of a plant

and a controller. The plant will be described by

a function p t S u * Sy induced by the system (f, g)
explained in Section IX. Ne assume that the value

oE g at the left aupporC point le flxed for the

problem and that the system has finite time hori-

zon. Relative to the feedback controlter, we

choose to control the ent_re system from a point

of reference r. which is an element of the _unction

set S r ¢ R. also a real vector function space.
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CRneral equations for the controller are of the

form

_c ° fcCXc ' r, y) , u - gcCXc, r, y)

on s suitably designed subset Sc c Xc x R x ¥ x U,

with Xe s real vector function space. Analogously,

we introduce the function c : (Sc) r x (Sc)y • (St) u

and su,amarize these features in Figure 3. We --,st

arrange in our design process that the feedback

system of Pigure 3 Is properly posed, in the sense

that xt end x, at their left support polnta, to-
gether with r in {St) r determine (x, Xc, r, u, Y)

in a subset Sfb c X x X c x R a U x Y associated
with an overall feedback system (ffb, gfb )'

Figure 3.

Technically, on a finite time interval, _e may

not with acceptable control action schleve a steady

state in Figure 3, unless such steady state matches

the system variables at the left time support. In

prectlce, however, we may not only achieve one

steady state, but several. The Idea may be ap-

proached as follows. Let (_, Xc, r, u, y) be a

quintuple of constant functions which satisfy the

system equations in Figure 3:

fc(;c , _; _) = 0 : ; =gc(Xc, r, _) .

Ve shall asa,Jma that. whenever this ls the case,

the reference point _ infers _ and _. Clearly,

such a qu[ntuple need not lie in Sfb, because

and _c need not match left support values for x

and Xc. respectlvely. But 1_ may happen that

(_, xc, r. u. _) Is approached quite closely by

some (x, xc, r. u, 7) which is In Sfb, over some
eubae¢ of the time support.

To make this notion precise, introduce the

tde|m that X, XC, R, U, and Y are spaces which, at

any point of time support, contsln functions whose

values are secrets An sppropriale Elnlte dimension-

al real spaces. _tabllsh no_ on these last five

spaces, and develop s norm on their product in the

usual way. Close approach of (x, Xc, r, u, 7) to

(;' ;C. _. _. _) Imans that. for prespecified
(¢, _), there exist times tj(¢, 6) < t1C¢, _) +

< t2(¢, a) such that

(x(t)-;, Xc(_)-; c, r(t)-_, u(t)-;, y(t)-_)

Is less than ¢ IQ norm for tl(¢, 6) < t < tZ(t, 6).

To get the practical result, _.D choose c very mall
end d of reasonable size. In practice, the value

of ¢ may be conveniently inferred from the resolv-

ing capability _! available sensors.
Denote by $fb the let of such (_, x c, r. u, _)

which can be approached closely by elements of

Sfb. we vlsh to extend the definition of p to
include such steady inputs and outputs. Pot any
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point _n _fbt select the associated pair (_, _) and

de[the _ : (_fb)u _ (Sfb)y by _ - _(_). For this
deflnltionto be sound, ve cannot allow two points

in _fb with sssoclated pairs (_. _|.) and (_, _2).

unless _I = _2" One way to assure this feature is

to require that two points _n 5fb with associated

pairs (_1, _) and (x2, _) satisfy _1 " _2" We

shall make this assumption for the plants and re-
fer to _ as the plant steady-state input-output

map. klon_ the same llnee, _m construct

: (Sfb)r x ($fb)y * (Sfb)u-

_Ith these maps in place, we have Figure 6.

Figure 4.

_e equations for Figure 4 are y - p(u), u -

_(_, _). We shall require that F in these equa-

tlnns implies _ and _.

_'ne role of the controller c is twofold: to

close the loop and to inject suitable command sig-

nals into the loop. Generally, the task of • con-

troller is to produce desired plant outputs wlth

the aid of acceptable plant inputs. In keeping

with control practice, we shall inject one signal.

Yr, correepondin_ to desirable plant output behav-

lot. and another signal, Ur, corresponding to ac-

ceptable plant input behavior. Both signals to be

injected are assumed to be generated by r alone.
Vlth these steps, we have Figure 5. The function

Figure 5.

Cpf : ($fb)r * U m Y As the input/output function
of • prefllter. The function Cfb : (U x T) x

(Sfb) _ * (Sfb) u is the input/output function of
the feedback part of the controller, n_ly that

part which closes the loop and executes co,m=nd

injection.
Because U x Y admits the direct su_ structure

U • ¥, ve see that the function prefllter Cpf can
play the role of c in Figure 2, Section If. Simply

identify V - (Sfb)r, _ - U, and Z - Y. Note care-

fully that V need not be a vector space. The re-

sult is that

Opt - iu.a + iy.b.

which can he diagrammed a| in Figure 6. Clearty,

/
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Figure 6.

the essential pert of Cpf in Figure 6 is the pair
of functions (e, b). We show these explicitly in

Figure 7 while incorporating the functions iu, ty,

and the sum JunctiOn into Cfb , without loss of

generality.

Figure 7.

Controller Separation

Next we wish to place a single constraint up-

on Cfb. Notice that u - Cfb(U r, Yr, Y), from Fig-

ure 7. Make the foliowlng assumption: When y - Yre

then Cfb(U r, Yr, Y) " Ur" Intuitively, this means

that a balance of the desirable plant output behav-

ior with the actual plant output behavior implies

the feedback controller producing plant input be-

havior equal to that desired. This assumption, in

the context of F/Ruts 7, _ould require Yr " p(ur)"

Because of the we_ u r and Yr are generated, we have
as a consequence thet b(r) - p(a(r)) or b " p.a.

When a pair (a, b) satisfies this condition, ws
shall use the notation a - m , b - t and the ter-

minology that (m, t) constltutes a coordinated

syntheals of the prefllter. Such (m, t) satisfy

the commtatlve dlagram of Figure 8.

(Sfb)r_

(Sfb) )(Sfb)y
P

Figure 8.

Moreover, the choice (a, b) - (m, t), with (m, t)

as shown In Figure 8, has the corresponding con-
verse property if the plant satisfies an lnverti-

bllitF condition u - p'l(7) on alp. Indeed, when

Y " Yr, ve find

p-l(y) . p-t(yr) . p-lCt(r)}

- p'l(p.m)(r) - re(r) " u r

which, in the systez of Figure 7 means that Cfb(Ur,

Yr, ?r) " Ur"
With reference to the last subsection of Sac-

tlon II, we observe Lhat, under appropriate condi-

tions,

Cfb(Ur, Yr, Y) = CfblUr, Yr, Yr + (Y - Yr))

" Cfb(Ur, Yr, Yr) + CDCfb) (Ur, Yr, Yr) (Y - Yr)

to a first order approximation. The first term In

the right member is, under our assumption on Cfb,

Just u r. If we simplify the notation by

Cfb(Ur, Yr, Y) " Ur - gr(Y " Yr)

then we can further develop Figure 7 into Figure 9.

Figure 9.

Inasmuch as gr is s linear map, y = Yr implies u -

Ur, as assumed. Under such circumstances, the loop

is closed, but the output of gr is zero. we call

this separ_tlon of prefiltar signal injection from

feedback filter action a coordination of feedfor-

ward control.

Notice that, with the configuration of Flg-

ure 9, (a, b) equal to (m. t), with (m, t) as in

Figure 8, is a necessary and sufficient condition

for separation, even if p falls to invert.

The above ideas on separation may be carried

through to the steady state case, with the agree-

ments described earlier In this section. In this

event, one introduces the diagram of Figure I0.

(Sfb)r

(Sfb) u , )(Sfb)y

Figure I0.

The analysis above indicates that, under very

modest assumptions, feedforward coordination by

means of the prefilter palr (m, t) in Figure 8 is

virtually tnevltable in the design process. In the

remainder of this paper, we relate (_, _) in FiR-
ure lO to the real-world design process, with the

aid of the simulation of Section IV. In the com-

panlon paper, described _n Section I, we address
the design issues associated with Figure 8. As a

practical matter, it is also desirable to separate
the portion of the controller which realizes (_, _)

from that which completes (m, t). In this way, if

specified steady stere operating conditions change,

only one feature of the controller has to be modl-
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£ied, Conceptually, w_ can accomplish this by fac-

toring (_, _) out of (m, t)o The result of this

factortzatlon is a sort of "unit Rain" pair (_, _),

which is used in the companion paper without tildes.

IV. GAS TURBINE ENGINE

A nonlinear simulation of • turbojet engine

is show, s in Figure 11. It is representative, on a

small scale, of the kind of nonlinear plant which
we have mentioned above and with which designers

of turbine engines and turbine controls currently

deal in practice. In essence, it is a computer

simulation, typically constructed by engine manu-

facturers and provided to control designers.

The model describes nonlinear steady state

and dynamical relationships between three plant

inputs and six plant outputs. The nonlinear si_--

ulation consists of three Integrators, nine non-

llnesr functions or schedules (including five bl-
variant schedules), six multiplications, three di-

visions, and nine additive Junctions. The plant

inputs are Wf, fuel flow, AS, exhaust nozzle area,
and B. turbine vane position; and the six outputs

are N, engine speed, Td, turbine _en_perature, F3,

compressor pressure, PS, tallpLpe pressure, TS,

tailptpe temperature, and FN, engine thrust. The

set of nonlinear functions used to describe the

dynamics of the turbine engine are included as

Figures 12 through 20. This way of descrlbln_

nonlinear relationships is typical oE current

practice for turbine engines, as also for ocher
nonlinear, ph_slcal plant descriptions. Note that

they are relatively smooth and noC easily described

by textbook special funcClone.

I i

P2 Aj_ F_

P2

Figure II.

V. OPERATING LINE

Refer now to Figure 7 in Section III. By an

operatlng polnt_ _e shall mean the co_onent _ in

any fivetuple (r, Ur, Yr, u, y) which oaCisfies

[he system equations _r " a(_), ;r " _(_), _ "

_fb(;r, _r' _), _" _(;) and which can be a_ptoach-

ed closely by an element in Sfb. For the turbojet

engine slm,_latlon of Section IV, such an operaCin_

polnC is given by N e 10,200 RPM. T 4 - 1,157.6 "R,

and FN - 758.6 LBS, if we choose N, Td, and FN as
the three outputs to be controlled. Inasmuch as

all fuoctiofla involved in the definition of an op-

erating point are constant with time, and because

eIl these functions take their values at any time

tn a finite dimenslonal real vector apace, it is

always possible co regard an operatln_ poin_ as

such a list o_ real numbers. In other words,
" BP, where _ cY Is the aubapaca o_ constant

functions.

It is stralghtforvard to depict operating
points for Section IV in IR3. FOr the nuDetic

example above, the operating point can be shown

as in Figure 21.

PN

758.6 / ....
/ //

i
I I i

z ''
00;___ I / 1,z57:6lo.2 _ _ .!/

/N
l'i_Nre 21.

T4

We next introduce a family of such points:

N T4 FN

IO,2OO 1.157.6 758.6

11,900 1,242,4 1,603.2

13,6OO 1,403.5 3,213.O

15,300 1,693.7 _,439.0

17,000 1,996.5 5,II0.0

18,700 2,241.2 5,434.0

with units in RPM, "R, and LBS, respectively, as

before. Note that our previous e_ample of an

operatln_ point is _ust the first of these. We

sketch the operatln_ polota in Figure 22, where we

have Joined them with a smooch curve.

An operstln_ llne is then a s=ooth curve of

operating points _ through which we wish our feed-
back system to be able to pass, that ie, to which

we wish the aolutlon y of our feedback system Co be

able to approdch closely. Discussion of theoreti-

cal features of operatln_ lines has not received

much attention in the literature. The dynamic

characteristics of nonlinear control destRn, the

numerical conditioning of control algorithms, and

the seneltivlty of feedback system_ may be _reatly

affected by opetatln_ 1ins design.

We shall define an operating line aa a func-

tion. To .ca the Idea behlnd this, we have only
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FN

3,000.

1,000-

14._

Operatin_ Line

/ 1,2oo

Figure 22.

/
1,600

,, T4

to examine FiRure 23, where the abscissa has been

chosen as the 'number" of the operating point.

+°°°1/ d1,600

12,000 i, 200 -4

1" a I , "T', , ; ;
2 4 6 2 4 6

FN

1,000

2 4 6

Yi_re 23.

These three graphs define = function from the eat of

numbered points to_ for the turbojet simulation.

FrequenttT, the operating point number ma7 be as-
sociated with some tangible "dlal setting" vari-

able associated with the controller. For the tur-

bojet of Section IV, this variable is Paver Lever

Anglo (PLA) which Is given in deRreee. Typical
PLA settings for Figure 23 are listed belay:

Operating Point I 2 3 4 5 6

PLA(Z) 60 70 BO 90 I00 ItS

Intuitively PLA can be described sss throttle

eetttn K for the engine. Certain percent_e s,t-
tln_ ma T be associated wlth engine Idle. engine

cruise, s:_d so forth. In our illustration, then,

the operating llne iS a function _ : {PLA) ° p3 • +

from the indicated met of power lever envies In-

to triples of real nunbers corresponding to engine

speeds, turbine temperatures, and tErust.

In general, we shall understand an operstlng
llne as a function _ from a eel of references to +

_P. Each point in the image of o is an operating

point for the feedback system. The image of

produces a curve in _, wlth its ar_ment acting as

a parameter on the curve. Since s single pars=-- ....

eter suffices to locate a point on such a curve,

the set of references may be imbedded in a one-

dimensional real vector apace R.

VI. SCHEDULE DESIGN

Schedules provide e convenient, versatile sad

pictorial way to represent nonlinear function re-

latlonshlr_ associated with abstract functions and

operators. In effect, the control designer con-

st ructs schedules which then imply the functions.

Schedules serve to maintain designer insight end

influence. Moreover, schedules provide a concrete

uay in. vhlch to deliver abstract functions to the

customer. Refer to Section lI.

Our objective is to use these kinds of non-

linear plant descriptions in n s yste_tic manner to
design nonlinear controllers. In this section, we

address steady state schedules. These schedules

may be regarded as steady elate instructions to the

controller, ge shall define them in this section,

and give illustrations for our gas turbine engine _

application.

The treatment which foll_s assumes that an

operating line has been completed. See Section V.
Recall the definition of an operating line as

a function _ from a eel of references R to RP. We

select (_fh)r as the set of references. See Section

Ill. Thus _ : (_fb)r + RP is the numeric context
for our discussion.

In Section V, Figure 23 and the PLA table can _
be used to construct a representation of • First

choose (_fb)r = {60, 70, 80, 90, lO0, 1]0}, the set
of six real nunbers. Jolnin_ the points, as in

Figure 23, with an appropriately smooth curve would

then extend (_fb)r tO 160, II0]. the closed inter-
val,

For the purposes explained in Section III,

shall assume that the plant is steady-state invert-

ible. In terms of Figure 8, this means that we ._

have the commutative diagram of Fi_re 2&. Atsble

/(Sfb)r

(Sfb)u _ (Sfb)y

Figure 24.
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can be drawn for _-l In the case of each operattn_

point shown in Figure 22. We list thi_ tnble he-

low, msklnR use of the calculation

(Wf, Aj, _) - u - p-l(_) . _-l(N, T&, FN).

To save space, for _ we list only N:

S uf B Aj

10,200 557.5 -.833 194.8

II,900 7_7.5 -.5 168.1

13,600 l,ll4 -.167 141,_

15,300 1,748 .167 114.7

17,O00 2,497 .5 88.0

18,700 3,156 .833 72.28

Nf is in pounds per minute; AJ is in square inches;
end B is a normalized degree variable. We can use

this information to define • function _ : [60, llO]

4 R3 as in Figure 25.

SO constructed, _=_ - _, which means that the

choice (_, _) - (_, _) is possible, and (_, 3) is s

coordinated, steady state, feedforwsrd synthesis,

in the sense of Figure 8. For realization, it is

useful to construct _ in the for_ _-i,[, as aho_a

In Figure 26.

Wf

2000 /6
A -.8

200

i00

i I JI

70 90 II0

'_ I w 10

Figure 25.

Vll. CONCLUSIONS

The tasks of a feedback controller are to

close loops and 1niece signals into those loops,

Under broad esetmptions, in this paper ve have

studied • condition under which these teaks may

be separated. In simplest ter_, we have sseu_ed
that the controller is to produce acceptable con-

ire1 action when the plant ie producin[ desirable

responses. _len the prefllter _st be a pair of

functions (m, t) related by p, what we call s co-

ordinated _vnthesis. For a realistic Rn_ turbine

model, we have illustrated the construction of

(m, t) in the steady stste. A cure,anion psper in

thi_ proccedin_s illustrates the rest of the de-

BeRn process. Refer to Section I.
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